BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35042200)

  • 41. Metastability and Reversibility of Anionic Redox-Based Cathode for High-Energy Rechargeable Batteries.
    Qiu B; Zhang M; Lee SY; Liu H; Wynn TA; Wu L; Zhu Y; Wen W; Brown CM; Zhou D; Liu Z; Meng YS
    Cell Rep Phys Sci; 2020; 1(3):. PubMed ID: 33655226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries.
    Liu Q; Hu Z; Chen M; Zou C; Jin H; Wang S; Chou SL; Dou SX
    Small; 2019 Aug; 15(32):e1805381. PubMed ID: 30773813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intrinsic Origin of Nonhysteretic Oxygen Capacity in Conventional Na-Excess Layered Oxides.
    Choi G; Park S; Koo S; Lee J; Kwon D; Kim D
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46620-46626. PubMed ID: 34546710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-Step Redox in Polyimide: Witness by In Situ Electron Paramagnetic Resonance in Lithium-ion Batteries.
    Bai Y; Wang Z; Qin N; Ma D; Fu W; Lu Z; Pan X
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202303162. PubMed ID: 36896629
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF
    Zhao S; Sun B; Yan K; Zhang J; Wang C; Wang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33260-33268. PubMed ID: 30188678
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Na-rich layered Na
    Song S; Kotobuki M; Chen Y; Manzhos S; Xu C; Hu N; Lu L
    Sci Rep; 2017 Mar; 7(1):373. PubMed ID: 28336964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Activity and Reversibility of Anionic Redox by Tuning Lithium Vacancies in Li-Rich Cathode Materials.
    Li S; Zhang H; Li H; Zhang S; Zhu B; Wang S; Zheng J; Liu F; Zhang Z; Lai Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39480-39490. PubMed ID: 34382789
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.
    Liu W; Oh P; Liu X; Lee MJ; Cho W; Chae S; Kim Y; Cho J
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4440-57. PubMed ID: 25801735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accelerated Degradation in a Quasi-Single-Crystalline Layered Oxide Cathode for Lithium-Ion Batteries Caused by Residual Grain Boundaries.
    Zhang R; Wang C; Ge M; Xin HL
    Nano Lett; 2022 May; 22(9):3818-3824. PubMed ID: 35471058
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A glance of the layered transition metal oxide cathodes in sodium and lithium-ion batteries: difference and similarities.
    Xiao B; Omenya F; Reed D; Li X
    Nanotechnology; 2021 Jul; 32(42):. PubMed ID: 34243170
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Iodine Redox Chemistry in Rechargeable Batteries.
    Ma J; Liu M; He Y; Zhang J
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12636-12647. PubMed ID: 32939916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Mechanistic Insight into the Oxygen Redox of Li-Rich Layered Cathodes and their Related Electronic/Atomic Behaviors Upon Cycling.
    Kang S; Choi D; Lee H; Choi B; Kang YM
    Adv Mater; 2023 Oct; 35(43):e2211965. PubMed ID: 36920413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synergistic activation of anionic redox via cosubstitution to construct high-capacity layered oxide cathode materials for sodium-ion batteries.
    Ji H; Ji W; Xue H; Chen G; Qi R; Huang Z; Fang H; Chu M; Liu L; Ma Z; Xu S; Zhai J; Zeng W; Schulz C; Wong D; Chen H; Xu J; Yin W; Pan F; Xiao Y
    Sci Bull (Beijing); 2023 Jan; 68(1):65-76. PubMed ID: 36581534
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lithium-rich sulfide/selenide cathodes for next-generation lithium-ion batteries: challenges and perspectives.
    Chen M; Liu Y; Zhang Y; Xing G; Tang Y
    Chem Commun (Camb); 2022 Mar; 58(22):3591-3600. PubMed ID: 35254369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Understanding the Mechanism for Capacity Decay of V
    Shi X; Du J; Jones TGJ; Wang X; Liang HP
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29667-29674. PubMed ID: 30091587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.
    Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D
    ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiscale Deficiency Integration by Na-Rich Engineering for High-Stability Li-Rich Layered Oxide Cathodes.
    Liu Q; Xie T; Xie Q; He W; Zhang Y; Zheng H; Lu X; Wei W; Sa B; Wang L; Peng DL
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8239-8248. PubMed ID: 33555872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering Crystal Orientation of Cathode for Advanced Lithium-Ion Batteries: A Minireview.
    Zhu L; Fu L; Zhou K; Yang L; Tang Z; Sun D; Tang Y; Li Y; Wang H
    Chem Rec; 2022 Oct; 22(10):e202200128. PubMed ID: 35801858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.