These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 35042201)
1. Detection of trace volatile organic compounds in spiked breath samples: a leap towards breathomics. Ray B; Parmar S; Vijayan V; Vishwakarma S; Datar S Nanotechnology; 2022 Feb; 33(20):. PubMed ID: 35042201 [TBL] [Abstract][Full Text] [Related]
2. Virtual Sensor Array Based on Butterworth-Van Dyke Equivalent Model of QCM for Selective Detection of Volatile Organic Compounds. Li D; Xie Z; Qu M; Zhang Q; Fu Y; Xie J ACS Appl Mater Interfaces; 2021 Oct; 13(39):47043-47051. PubMed ID: 34546706 [TBL] [Abstract][Full Text] [Related]
3. Volatile organic compound sensing in breath using conducting polymer coated chemi-resistive filter paper sensors. Mondal D; Nair AM; Mukherji S Med Biol Eng Comput; 2023 Aug; 61(8):2001-2011. PubMed ID: 37286862 [TBL] [Abstract][Full Text] [Related]
4. A flexible virtual sensor array based on laser-induced graphene and MXene for detecting volatile organic compounds in human breath. Li D; Shao Y; Zhang Q; Qu M; Ping J; Fu Y; Xie J Analyst; 2021 Sep; 146(18):5704-5713. PubMed ID: 34515697 [TBL] [Abstract][Full Text] [Related]
5. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath. Riess U; Tegtbur U; Fauck C; Fuhrmann F; Markewitz D; Salthammer T Anal Chim Acta; 2010 Jun; 669(1-2):53-62. PubMed ID: 20510903 [TBL] [Abstract][Full Text] [Related]
6. Establishing Healthy Breath Baselines With Tin Oxide Sensors: Fundamental Building Blocks for Noninvasive Health Monitoring. Heranjal S; Maciel M; Kamalapally SNR; Ramrakhiani I; Schulz E; Cao S; Liu X; Relich RF; Wek R; Woollam M; Agarwal M Mil Med; 2024 Aug; 189(Suppl 3):221-229. PubMed ID: 39160864 [TBL] [Abstract][Full Text] [Related]
7. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening. Zhong X; Li D; Du W; Yan M; Wang Y; Huo D; Hou C Anal Bioanal Chem; 2018 Jun; 410(16):3671-3681. PubMed ID: 29654337 [TBL] [Abstract][Full Text] [Related]
8. Detecting cancer by breath volatile organic compound analysis: a review of array-based sensors. Queralto N; Berliner AN; Goldsmith B; Martino R; Rhodes P; Lim SH J Breath Res; 2014 Jun; 8(2):027112. PubMed ID: 24862241 [TBL] [Abstract][Full Text] [Related]
9. Adsorption Thermodynamic Analysis of a Quartz Tuning Fork Based Sensor for Volatile Organic Compounds Detection. Deng Y; Liu NY; Tsow F; Xian X; Forzani ES ACS Sens; 2017 Nov; 2(11):1662-1668. PubMed ID: 29057647 [TBL] [Abstract][Full Text] [Related]
10. Breathomics from exhaled volatile organic compounds in pediatric asthma. Neerincx AH; Vijverberg SJH; Bos LDJ; Brinkman P; van der Schee MP; de Vries R; Sterk PJ; Maitland-van der Zee AH Pediatr Pulmonol; 2017 Dec; 52(12):1616-1627. PubMed ID: 29082668 [TBL] [Abstract][Full Text] [Related]
11. Graphene and metal-organic framework hybrids for high-performance sensors for lung cancer biomarker detection supported by machine learning augmentation. Tran ATT; Hassan K; Tung TT; Tripathy A; Mondal A; Losic D Nanoscale; 2024 May; 16(18):9084-9095. PubMed ID: 38644676 [TBL] [Abstract][Full Text] [Related]
12. On the importance of accurate quantification of individual volatile metabolites in exhaled breath. Smith D; Španěl P J Breath Res; 2017 Nov; 11(4):047106. PubMed ID: 28635619 [TBL] [Abstract][Full Text] [Related]
13. Light-Regulated Electrochemical Reaction Assisted Core-Shell Heterostructure for Detecting Specific Volatile Markers with Controllable Sensitivity and Selectivity. Xu Y; Li H; Zhang X; Jin H; Jin Q; Shen W; Zou J; Deng S; Cheung W; Kam W; Zhang X; Jian J ACS Sens; 2019 Apr; 4(4):1081-1089. PubMed ID: 30912423 [TBL] [Abstract][Full Text] [Related]
14. Love Wave Sensors with Silver Modified Polypyrrole Nanoparticles for VOCs Monitoring. Šetka M; Bahos FA; Matatagui D; Gràcia I; Figueras E; Drbohlavová J; Vallejos S Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155699 [TBL] [Abstract][Full Text] [Related]
15. Evidence of endogenous volatile organic compounds as biomarkers of diseases in alveolar breath. Sarbach C; Stevens P; Whiting J; Puget P; Humbert M; Cohen-Kaminsky S; Postaire E Ann Pharm Fr; 2013 Jul; 71(4):203-15. PubMed ID: 23835018 [TBL] [Abstract][Full Text] [Related]
16. Chemiresistive Sensor Array with Nanostructured Interfaces for Detection of Human Breaths with Simulated Lung Cancer Breath VOCs. Shang G; Dinh D; Mercer T; Yan S; Wang S; Malaei B; Luo J; Lu S; Zhong CJ ACS Sens; 2023 Mar; 8(3):1328-1338. PubMed ID: 36883832 [TBL] [Abstract][Full Text] [Related]
17. Ionic Liquid-Carbon Nanotube Sensor Arrays for Human Breath Related Volatile Organic Compounds. Park CH; Schroeder V; Kim BJ; Swager TM ACS Sens; 2018 Nov; 3(11):2432-2437. PubMed ID: 30379539 [TBL] [Abstract][Full Text] [Related]
18. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Sun X; Shao K; Wang T Anal Bioanal Chem; 2016 Apr; 408(11):2759-80. PubMed ID: 26677028 [TBL] [Abstract][Full Text] [Related]
19. Ligand-Capped Ultrapure Metal Nanoparticle Sensors for the Detection of Cutaneous Leishmaniasis Disease in Exhaled Breath. Welearegay TG; Diouani MF; Österlund L; Ionescu F; Belgacem K; Smadhi H; Khaled S; Kidar A; Cindemir U; Laouini D; Ionescu R ACS Sens; 2018 Dec; 3(12):2532-2540. PubMed ID: 30403135 [TBL] [Abstract][Full Text] [Related]
20. Graphene-Doped Tin Oxide Nanofibers and Nanoribbons as Gas Sensors to Detect Biomarkers of Different Diseases through the Breath. Sánchez-Vicente C; Santos JP; Lozano J; Sayago I; Sanjurjo JL; Azabal A; Ruiz-Valdepeñas S Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]