These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35042205)

  • 1. Tracking the stochastic growth of bacterial populations in microfluidic droplets.
    Taylor D; Verdon N; Lomax P; Allen RJ; Titmuss S
    Phys Biol; 2022 Feb; 19(2):026003. PubMed ID: 35042205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Interaction Network Inference in Microfluidic Droplets.
    Hsu RH; Clark RL; Tan JW; Ahn JC; Gupta S; Romero PA; Venturelli OS
    Cell Syst; 2019 Sep; 9(3):229-242.e4. PubMed ID: 31494089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations.
    Postek W; Garstecki P
    Acc Chem Res; 2022 Mar; 55(5):605-615. PubMed ID: 35119826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet microfluidic system for high throughput and passive selection of bacteria producing biosurfactants.
    Staskiewicz K; Dabrowska-Zawada M; Kozon L; Olszewska Z; Drewniak L; Kaminski TS
    Lab Chip; 2024 Mar; 24(7):1947-1956. PubMed ID: 38436364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring and external control of pH in microfluidic droplets during microbial culturing.
    Tovar M; Mahler L; Buchheim S; Roth M; Rosenbaum MA
    Microb Cell Fact; 2020 Jan; 19(1):16. PubMed ID: 31996234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics.
    Boedicker JQ; Li L; Kline TR; Ismagilov RF
    Lab Chip; 2008 Aug; 8(8):1265-72. PubMed ID: 18651067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High diversity droplet microfluidic libraries generated with a commercial liquid spotter.
    Zhang JQ; Siltanen CA; Dolatmoradi A; Sun C; Chang KC; Cole RH; Gartner ZJ; Abate AR
    Sci Rep; 2021 Feb; 11(1):4351. PubMed ID: 33623093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals.
    Vincent ME; Liu W; Haney EB; Ismagilov RF
    Chem Soc Rev; 2010 Mar; 39(3):974-84. PubMed ID: 20179819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic control and quantification of bacterial population dynamics in droplets.
    Huang S; Srimani JK; Lee AJ; Zhang Y; Lopatkin AJ; Leong KW; You L
    Biomaterials; 2015 Aug; 61():239-45. PubMed ID: 26005763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interindividual Variation in Dietary Carbohydrate Metabolism by Gut Bacteria Revealed with Droplet Microfluidic Culture.
    Villa MM; Bloom RJ; Silverman JD; Durand HK; Jiang S; Wu A; Dallow EP; Huang S; You L; David LA
    mSystems; 2020 Jun; 5(3):. PubMed ID: 32606031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging.
    Zhang H; Guzman AR; Wippold JA; Li Y; Dai J; Huang C; Han A
    Lab Chip; 2020 Nov; 20(21):3948-3959. PubMed ID: 32935710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and Biological Dynamics Using Droplet-Based Microfluidics.
    Dressler OJ; Casadevall I Solvas X; deMello AJ
    Annu Rev Anal Chem (Palo Alto Calif); 2017 Jun; 10(1):1-24. PubMed ID: 28375703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronized reinjection and coalescence of droplets in microfluidics.
    Lee M; Collins JW; Aubrecht DM; Sperling RA; Solomon L; Ha JW; Yi GR; Weitz DA; Manoharan VN
    Lab Chip; 2014 Feb; 14(3):509-13. PubMed ID: 24292863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes.
    Watterson WJ; Tanyeri M; Watson AR; Cham CM; Shan Y; Chang EB; Eren AM; Tay S
    Elife; 2020 Jun; 9():. PubMed ID: 32553109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet microfluidics--a tool for single-cell analysis.
    Joensson HN; Andersson Svahn H
    Angew Chem Int Ed Engl; 2012 Dec; 51(49):12176-92. PubMed ID: 23180509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term microfluidic tracking of coccoid cyanobacterial cells reveals robust control of division timing.
    Yu FB; Willis L; Chau RM; Zambon A; Horowitz M; Bhaya D; Huang KC; Quake SR
    BMC Biol; 2017 Feb; 15(1):11. PubMed ID: 28196492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets.
    Gardner K; Uddin MM; Tran L; Pham T; Vanapalli S; Li W
    Lab Chip; 2022 Oct; 22(21):4067-4080. PubMed ID: 36214344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combating Antimicrobial Resistance via Single-Cell Diagnostic Technologies Powered by Droplet Microfluidics.
    Hsieh K; Mach KE; Zhang P; Liao JC; Wang TH
    Acc Chem Res; 2022 Jan; 55(2):123-133. PubMed ID: 34898173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.