These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1126 related articles for article (PubMed ID: 35042289)

  • 1. [Prediction of platinum-based chemotherapy sensitivity for epithelial ovarian cancer by multi-sequence MRI-based radiomic nomogram].
    Mao MM; Li HM; Shi J; Qiu QS; Feng F
    Zhonghua Yi Xue Za Zhi; 2022 Jan; 102(3):201-208. PubMed ID: 35042289
    [No Abstract]   [Full Text] [Related]  

  • 2. MR-based radiomics-clinical nomogram in epithelial ovarian tumor prognosis prediction: tumor body texture analysis across various acquisition protocols.
    Wang T; Wang H; Wang Y; Liu X; Ling L; Zhang G; Yang G; Zhang H
    J Ovarian Res; 2022 Jan; 15(1):6. PubMed ID: 35022079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of radiomics nomogram for metastatic status of epithelial ovarian cancer.
    Leng Y; Wang X; Zheng T; Peng F; Xiong L; Wang Y; Gong L
    Sci Rep; 2024 May; 14(1):12456. PubMed ID: 38816463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application Value of Magnetic Resonance Radiomics and Clinical Nomograms in Evaluating the Sensitivity of Neoadjuvant Chemotherapy for Nasopharyngeal Carcinoma.
    Hu C; Zheng D; Cao X; Pang P; Fang Y; Lu T; Chen Y
    Front Oncol; 2021; 11():740776. PubMed ID: 34790570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer.
    Zhang L; Shen M; Zhang D; He X; Du Q; Liu N; Huang X
    J Magn Reson Imaging; 2024 Sep; 60(3):1203-1212. PubMed ID: 38088478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of platinum resistance for advanced high-grade serous ovarian carcinoma using MRI-based radiomics nomogram.
    Li H; Cai S; Deng L; Xiao Z; Guo Q; Qiang J; Gong J; Gu Y; Liu Z
    Eur Radiol; 2023 Aug; 33(8):5298-5308. PubMed ID: 36995415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nomogram based on MRI radiomics features of mesorectal fat for diagnosing T2- and T3-stage rectal cancer.
    Deng B; Wang Q; Liu Y; Yang Y; Gao X; Dai H
    Abdom Radiol (NY); 2024 Jun; 49(6):1850-1860. PubMed ID: 38349392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive prediction of residual disease for advanced high-grade serous ovarian carcinoma by MRI-based radiomic-clinical nomogram.
    Li H; Zhang R; Li R; Xia W; Chen X; Zhang J; Cai S; Li Y; Zhao S; Qiang J; Peng W; Gu Y; Gao X
    Eur Radiol; 2021 Oct; 31(10):7855-7864. PubMed ID: 33864139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preoperative prediction of histopathological grading in patients with chondrosarcoma using MRI-based radiomics with semantic features.
    Li X; Zhang J; Leng Y; Liu J; Li L; Wan T; Dong W; Fan B; Gong L
    BMC Med Imaging; 2024 Jul; 24(1):171. PubMed ID: 38992609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Radiomics Nomogram Based on Magnetic Resonance Imaging for Differentiating Type I/II Epithelial Ovarian Cancer.
    Wei M; Feng G; Wang X; Jia J; Zhang Y; Dai Y; Qin C; Bai G; Chen S
    Acad Radiol; 2024 Jun; 31(6):2391-2401. PubMed ID: 37643927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application Values of 2D and 3D Radiomics Models Based on CT Plain Scan in Differentiating Benign from Malignant Ovarian Tumors.
    Li S; Liu J; Xiong Y; Han Y; Pang P; Luo P; Fan B
    Biomed Res Int; 2022; 2022():5952296. PubMed ID: 35224097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of microvascular invasion in hepatocellular carcinoma patients with MRI radiomics based on susceptibility weighted imaging and T2-weighted imaging.
    Geng Z; Wang S; Ma L; Zhang C; Guan Z; Zhang Y; Yin S; Lian S; Xie C
    Radiol Med; 2024 Aug; 129(8):1130-1142. PubMed ID: 38997568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The value of conventional magnetic resonance imaging based radiomic model in predicting the texture of pituitary macroadenoma].
    Chen JM; Wan Q; Zhu HY; Ge YQ; Wu LL; Zhai J; Ding ZM
    Zhonghua Yi Xue Za Zhi; 2020 Dec; 100(45):3626-3631. PubMed ID: 33333688
    [No Abstract]   [Full Text] [Related]  

  • 14. Radiomic nomogram based on MRI to predict grade of branching type intraductal papillary mucinous neoplasms of the pancreas: a multicenter study.
    Cui S; Tang T; Su Q; Wang Y; Shu Z; Yang W; Gong X
    Cancer Imaging; 2021 Mar; 21(1):26. PubMed ID: 33750453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preoperative prediction of HER-2 expression status in breast cancer based on MRI radiomics model].
    Zhang Y; Huang H; Yin L; Wang ZX; Lu SY; Wang XX; Xiang LL; Zhang Q; Zhang JL; Shan XH
    Zhonghua Zhong Liu Za Zhi; 2024 May; 46(5):428-437. PubMed ID: 38742356
    [No Abstract]   [Full Text] [Related]  

  • 16. Ultrasound-based radiomics for predicting different pathological subtypes of epithelial ovarian cancer before surgery.
    Tang ZP; Ma Z; He Y; Liu RC; Jin BB; Wen DY; Wen R; Yin HH; Qiu CC; Gao RZ; Ma Y; Yang H
    BMC Med Imaging; 2022 Aug; 22(1):147. PubMed ID: 35996097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of BOLD
    Deng Y; Pan L; Xing W; Zhou Z; Chen J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2021 Sept 28; 46(9):1010-1017. PubMed ID: 34707012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preoperative prediction for lauren type of gastric cancer: A radiomics nomogram analysis based on CT images and clinical features.
    Sun Z; Jin L; Zhang S; Duan S; Xing W; Hu S
    J Xray Sci Technol; 2021; 29(4):675-686. PubMed ID: 34024809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a nomogram to radiomics labels in the treatment prediction scheme for lumbar disc herniation.
    Yu G; Yang W; Zhang J; Zhang Q; Zhou J; Hong Y; Luo J; Shi Q; Yang Z; Zhang K; Tu H
    BMC Med Imaging; 2022 Mar; 22(1):51. PubMed ID: 35305577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer.
    Zhang K; Ren Y; Xu S; Lu W; Xie S; Qu J; Wang X; Shen B; Pang P; Cai X; Sun J
    Med Phys; 2021 Sep; 48(9):4872-4882. PubMed ID: 34042185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.