BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35042523)

  • 1. HairNet: a deep learning model to score leaf hairiness, a key phenotype for cotton fibre yield, value and insect resistance.
    Rolland V; Farazi MR; Conaty WC; Cameron D; Liu S; Petersson L; Stiller WN
    Plant Methods; 2022 Jan; 18(1):8. PubMed ID: 35042523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HairNet2: deep learning to quantify cotton leaf hairiness, a complex genetic and environmental trait.
    Farazi M; Conaty WC; Egan L; Thompson SPJ; Wilson IW; Liu S; Stiller WN; Petersson L; Rolland V
    Plant Methods; 2024 Mar; 20(1):46. PubMed ID: 38504327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Few-shot cotton leaf spots disease classification based on metric learning.
    Liang X
    Plant Methods; 2021 Nov; 17(1):114. PubMed ID: 34749780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf pubescence and two-spotted spider mite webbing influence phytoseiid behavior and population density.
    Roda A; Nyrop J; English-Loeb G; Dicke M
    Oecologia; 2001 Dec; 129(4):551-560. PubMed ID: 24577695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A donor-specific QTL, exhibiting allelic variation for leaf sheath hairiness in a nested association mapping population, is located on barley chromosome 4H.
    Saade S; Kutlu B; Draba V; Förster K; Schumann E; Tester M; Pillen K; Maurer A
    PLoS One; 2017; 12(12):e0189446. PubMed ID: 29216333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of quantitative characteristics describing wheat leaf pubescence with a novel image-processing technique.
    Genaev MA; Doroshkov AV; Pshenichnikova TA; Kolchanov NA; Afonnikov DA
    Planta; 2012 Dec; 236(6):1943-54. PubMed ID: 22990907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhenoBot: an automated system for leaf area analysis using deep learning.
    Richardson GA; Lohani HK; Potnuru C; Donepudi LP; Pankajakshan P
    Planta; 2023 Jan; 257(2):36. PubMed ID: 36627492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning for Image Analysis: Leaf Disease Segmentation.
    F Danilevicz M; Bayer PE
    Methods Mol Biol; 2022; 2443():429-449. PubMed ID: 35037219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting.
    Giuffrida MV; Doerner P; Tsaftaris SA
    Plant J; 2018 Nov; 96(4):880-890. PubMed ID: 30101442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online yarn hairiness- Loop & protruding fibers dataset.
    Pereira F; Pinto L; Soares F; Vasconcelos R; Machado J; Carvalho V
    Data Brief; 2024 Jun; 54():110355. PubMed ID: 38586143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepFlower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field.
    Jiang Y; Li C; Xu R; Sun S; Robertson JS; Paterson AH
    Plant Methods; 2020 Dec; 16(1):156. PubMed ID: 33372635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hairiness: the missing link between pollinators and pollination.
    Stavert JR; Liñán-Cembrano G; Beggs JR; Howlett BG; Pattemore DE; Bartomeus I
    PeerJ; 2016; 4():e2779. PubMed ID: 28028464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images.
    Aatresh AA; Alabhya K; Lal S; Kini J; Saxena PUP
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1549-1563. PubMed ID: 34053009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality.
    Ma D; Wang L; Zhang L; Song Z; U Rehman T; Jin J
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32629882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and counting of pigment glands in cotton leaves using improved U-Net.
    She L; Wang N; Xu Y; Wang G; Shao L
    Front Plant Sci; 2022; 13():1075051. PubMed ID: 36699844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology.
    Zhang Y; Peng J; Yuan X; Zhang L; Zhu D; Hong P; Wang J; Liu Q; Liu W
    Hortic Res; 2021 Aug; 8(1):172. PubMed ID: 34333519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquiring and preprocessing leaf images for automated plant identification: understanding the tradeoff between effort and information gain.
    Rzanny M; Seeland M; Wäldchen J; Mäder P
    Plant Methods; 2017; 13():97. PubMed ID: 29151843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.