BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35042628)

  • 1. Thermophiles: potential chassis for lignocellulosic biorefinery.
    Jiang Y; Jiang W; Xin F; Zhang W; Jiang M
    Trends Biotechnol; 2022 Jun; 40(6):643-646. PubMed ID: 35042628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and Future Perspectives of Promising Biotechnologies for Lignocellulosic Biorefinery.
    Liu Y; Tang Y; Gao H; Zhang W; Jiang Y; Xin F; Jiang M
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial application of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery.
    Wu M; Jiang Y; Liu Y; Mou L; Zhang W; Xin F; Jiang M
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5739-5749. PubMed ID: 34283269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium.
    Shahab RL; Luterbacher JS; Brethauer S; Studer MH
    Biotechnol Bioeng; 2018 May; 115(5):1207-1215. PubMed ID: 29315476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A concerted enzymatic de-structuring of lignocellulosic materials using a compost-derived microbial consortia favoring the consolidated pretreatment and bio-saccharification.
    Rajeswari G; Kumar V; Jacob S
    Enzyme Microb Technol; 2024 Mar; 174():110393. PubMed ID: 38219439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consolidated bioprocessing performance of a two-species microbial consortium for butanol production from lignocellulosic biomass.
    Jiang Y; Lv Y; Wu R; Lu J; Dong W; Zhou J; Zhang W; Xin F; Jiang M
    Biotechnol Bioeng; 2020 Oct; 117(10):2985-2995. PubMed ID: 32946127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass.
    Minty JJ; Singer ME; Scholz SA; Bae CH; Ahn JH; Foster CE; Liao JC; Lin XN
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14592-7. PubMed ID: 23959872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing symbiotic consortia for lignocellulosic biofuel production.
    Zuroff TR; Curtis WR
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1423-35. PubMed ID: 22278256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification.
    Liang J; Fang X; Lin Y; Wang D
    J Hazard Mater; 2018 Apr; 347():341-348. PubMed ID: 29335216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy.
    Asemoloye MD; Bello TS; Oladoye PO; Remilekun Gbadamosi M; Babarinde SO; Ebenezer Adebami G; Olowe OM; Temporiti MEE; Wanek W; Marchisio MA
    Bioengineered; 2023 Dec; 14(1):2269328. PubMed ID: 37850721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium.
    Lazuka A; Auer L; Bozonnet S; Morgavi DP; O'Donohue M; Hernandez-Raquet G
    Bioresour Technol; 2015 Nov; 196():241-9. PubMed ID: 26247975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world.
    Liu YJ; Li B; Feng Y; Cui Q
    Biotechnol Adv; 2020; 40():107535. PubMed ID: 32105675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global status of lignocellulosic biorefinery: Challenges and perspectives.
    Singh N; Singhania RR; Nigam PS; Dong CD; Patel AK; Puri M
    Bioresour Technol; 2022 Jan; 344(Pt B):126415. PubMed ID: 34838977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: A review.
    Kumar Saini J; Himanshu ; Hemansi ; Kaur A; Mathur A
    Bioresour Technol; 2022 Sep; 360():127517. PubMed ID: 35772718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and Characterization of Lignocellulose-Degrading
    Meslé MM; Mueller RC; Peach J; Eilers B; Tripet BP; Bothner B; Copié V; Peyton BM
    Appl Environ Microbiol; 2022 Jan; 88(1):e0095821. PubMed ID: 34669438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products.
    Ali N; Zhang Q; Liu ZY; Li FL; Lu M; Fang XC
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):455-473. PubMed ID: 31686144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and evaluation of a natural derived bacterial consortium for efficient lignocellulosic biomass valorization.
    Du R; Li C; Pan P; Sze Ki Lin C; Yan J
    Bioresour Technol; 2021 Jun; 329():124909. PubMed ID: 33684842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion.
    Banu Jamaldheen S; Kurade MB; Basak B; Yoo CG; Oh KK; Jeon BH; Kim TH
    Bioresour Technol; 2022 Feb; 346():126591. PubMed ID: 34929325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar transport in thermophiles: Bridging lignocellulose deconstruction and bioconversion.
    Tjo H; Conway JM
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38866721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprospecting microbial hosts to valorize lignocellulose biomass - Environmental perspectives and value-added bioproducts.
    Lu H; Yadav V; Bilal M; Iqbal HMN
    Chemosphere; 2022 Feb; 288(Pt 2):132574. PubMed ID: 34656619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.