These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35042778)

  • 21. Emergence of a Stern Layer from the Incorporation of Hydration Interactions into the Gouy-Chapman Model of the Electrical Double Layer.
    Brown MA; Bossa GV; May S
    Langmuir; 2015 Oct; 31(42):11477-83. PubMed ID: 26474036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular-Level Insights into the Electrical Double Layer.
    Azimzadeh Sani M; Pavlopoulos NG; Pezzotti S; Serva A; Cignoni P; Linnemann J; Salanne M; Gaigeot MP; Tschulik K
    Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202112679. PubMed ID: 34796598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Dynamics Study of the Electric Double Layer and Nonlinear Spectroscopy at the Amorphous Silica-Water Interface.
    Chen SH; Singer SJ
    J Phys Chem B; 2019 Jul; 123(29):6364-6384. PubMed ID: 31251618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and dynamics of electrical double layers in organic electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2010; 12(20):5468-79. PubMed ID: 20467670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO-Solvent Gap.
    Sundararaman R; Figueiredo MC; Koper MTM; Schwarz KA
    J Phys Chem Lett; 2017 Nov; 8(21):5344-5348. PubMed ID: 29040805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite.
    Finney AR; McPherson IJ; Unwin PR; Salvalaglio M
    Chem Sci; 2021 Aug; 12(33):11166-11180. PubMed ID: 34522314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential capacitance of the double layer at the electrode/ionic liquids interface.
    Lockett V; Horne M; Sedev R; Rodopoulos T; Ralston J
    Phys Chem Chem Phys; 2010 Oct; 12(39):12499-512. PubMed ID: 20721389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of supporting electrolyte contributions in electrochemically modulated liquid chromatography.
    Keller DW; Ponton LM; Porter MD
    J Chromatogr A; 2005 Sep; 1089(1-2):72-81. PubMed ID: 16130774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrosorption capacitance of nanostructured carbon-based materials.
    Hou CH; Liang C; Yiacoumi S; Dai S; Tsouris C
    J Colloid Interface Sci; 2006 Oct; 302(1):54-61. PubMed ID: 16842809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal-Electrolyte Interface via a Grain-by-Grain Approach.
    Wang Y; Gordon E; Ren H
    Anal Chem; 2020 Feb; 92(3):2859-2865. PubMed ID: 31941268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance.
    Wu YC; Ye J; Jiang G; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13317-13322. PubMed ID: 33555100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific ion effects via ion hydration: II. Double layer interaction.
    Ruckenstein E; Manciu M
    Adv Colloid Interface Sci; 2003 Sep; 105():177-200. PubMed ID: 12969645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the Electrical Double Layer Revisited: Electrode Capacitance in Aqueous Solutions.
    Khademi M; Barz DPJ
    Langmuir; 2020 Apr; 36(16):4250-4260. PubMed ID: 32227968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accumulation of counterions and coions evaluated by cryogenic XPS as a new tool for describing the structure of electric double layer at the silica/water interface.
    Škvarla J; Kaňuchová M; Shchukarev A; Brezáni I; Škvarla J
    Phys Chem Chem Phys; 2017 Nov; 19(43):29047-29052. PubMed ID: 29067389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption, surface relaxation and electrolyte structure at Pt(111) electrodes in non-aqueous and aqueous acetonitrile electrolytes.
    Harlow GS; Aldous IM; Thompson P; Gründer Y; Hardwick LJ; Lucas CA
    Phys Chem Chem Phys; 2019 Apr; 21(17):8654-8662. PubMed ID: 30816395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.
    Moya AA
    Phys Chem Chem Phys; 2015 Feb; 17(7):5207-18. PubMed ID: 25600122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical double layers at the oil/water interface.
    Volkov AG; Deamer DW; Tanelian DL; Markin VS
    Prog Surf Sci; 1996 Sep; 53(1):1-134. PubMed ID: 11541752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 1pK and 2pK protonation models in the theoretical description of simple ion adsorption at the oxide/electrolyte interface: the analysis of temperature dependence of potentiometric titration curves.
    Piasecki W
    J Colloid Interface Sci; 2002 Oct; 254(1):56-63. PubMed ID: 12702425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface.
    Brown MA; Goel A; Abbas Z
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3790-4. PubMed ID: 26880184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ions Tune Interfacial Water Structure and Modulate Hydrophobic Interactions at Silica Surfaces.
    Tuladhar A; Dewan S; Pezzotti S; Brigiano FS; Creazzo F; Gaigeot MP; Borguet E
    J Am Chem Soc; 2020 Apr; 142(15):6991-7000. PubMed ID: 32233477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.