BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35042792)

  • 1. Surrogate gradients for analog neuromorphic computing.
    Cramer B; Billaudelle S; Kanya S; Leibfried A; Grübl A; Karasenko V; Pehle C; Schreiber K; Stradmann Y; Weis J; Schemmel J; Zenke F
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip.
    Yao M; Richter O; Zhao G; Qiao N; Xing Y; Wang D; Hu T; Fang W; Demirci T; De Marchi M; Deng L; Yan T; Nielsen C; Sheik S; Wu C; Tian Y; Xu B; Li G
    Nat Commun; 2024 May; 15(1):4464. PubMed ID: 38796464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors.
    Büchel J; Zendrikov D; Solinas S; Indiveri G; Muir DR
    Sci Rep; 2021 Dec; 11(1):23376. PubMed ID: 34862429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An artificial visual neuron with multiplexed rate and time-to-first-spike coding.
    Li F; Li D; Wang C; Liu G; Wang R; Ren H; Tang Y; Wang Y; Chen Y; Liang K; Huang Q; Sawan M; Qiu M; Wang H; Zhu B
    Nat Commun; 2024 May; 15(1):3689. PubMed ID: 38693165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic one-shot learning utilizing a phase-transition material.
    Galloni AR; Yuan Y; Zhu M; Yu H; Bisht RS; Wu CM; Grienberger C; Ramanathan S; Milstein AD
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2318362121. PubMed ID: 38630718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent spiking activity in neuromorphic circuits incorporating post-inhibitory rebound excitation.
    Hore A; Bandyopadhyay S; Chakrabarti S
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38861961
    [No Abstract]   [Full Text] [Related]  

  • 7. Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE).
    Kaiser J; Mostafa H; Neftci E
    Front Neurosci; 2020; 14():424. PubMed ID: 32477050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale full spike pattern for semantic segmentation.
    Su Q; He W; Wei X; Xu B; Li G
    Neural Netw; 2024 Aug; 176():106330. PubMed ID: 38688068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance deep spiking neural networks via at-most-two-spike exponential coding.
    Chen Y; Feng R; Xiong Z; Xiao J; Liu JK
    Neural Netw; 2024 Aug; 176():106346. PubMed ID: 38713970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional networks for fast, energy-efficient neuromorphic computing.
    Esser SK; Merolla PA; Arthur JV; Cassidy AS; Appuswamy R; Andreopoulos A; Berg DJ; McKinstry JL; Melano T; Barch DR; di Nolfo C; Datta P; Amir A; Taba B; Flickner MD; Modha DS
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11441-11446. PubMed ID: 27651489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encoding integers and rationals on neuromorphic computers using virtual neuron.
    Date P; Kulkarni S; Young A; Schuman C; Potok T; Vetter J
    Sci Rep; 2023 Jul; 13(1):10975. PubMed ID: 37414838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomimetic neural encoder for spiking neural network.
    Subbulakshmi Radhakrishnan S; Sebastian A; Oberoi A; Das S; Das S
    Nat Commun; 2021 Apr; 12(1):2143. PubMed ID: 33837210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual explanations from spiking neural networks using inter-spike intervals.
    Kim Y; Panda P
    Sci Rep; 2021 Sep; 11(1):19037. PubMed ID: 34561513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-Based Artificial Dendrites for Bio-Inspired Learning in Spiking Neuromorphic Systems.
    Liu S; Akinwande D; Kireev D; Incorvia JAC
    Nano Lett; 2024 May; ():. PubMed ID: 38819288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective and synchronous dynamics of photonic spiking neurons.
    Inagaki T; Inaba K; Leleu T; Honjo T; Ikuta T; Enbutsu K; Umeki T; Kasahara R; Aihara K; Takesue H
    Nat Commun; 2021 Apr; 12(1):2325. PubMed ID: 33893296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time Neural Connectivity Inference with Presynaptic Spike-driven Spike Timing-Dependent Plasticity.
    Kim D; Choi J; Cheon M; Jeong Y; Kim J; Kwak JY; Park JK; Lee S; Kim I; Park J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-learning synaptic delays, weights and adaptation in spiking neural networks.
    Deckers L; Van Damme L; Van Leekwijck W; Tsang IJ; Latré S
    Front Neurosci; 2024; 18():1360300. PubMed ID: 38680445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization methods for spiking neurons and networks.
    Russell A; Orchard G; Dong Y; Mihalas S; Niebur E; Tapson J; Etienne-Cummings R
    IEEE Trans Neural Netw; 2010 Dec; 21(12):1950-62. PubMed ID: 20959265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards biologically plausible model-based reinforcement learning in recurrent spiking networks by dreaming new experiences.
    Capone C; Paolucci PS
    Sci Rep; 2024 Jun; 14(1):14656. PubMed ID: 38918553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.