BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35042799)

  • 1. Yeast has evolved to minimize protein resource cost for synthesizing amino acids.
    Chen Y; Nielsen J
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae?
    Raiford DW; Heizer EM; Miller RV; Akashi H; Raymer ML; Krane DE
    J Mol Evol; 2008 Dec; 67(6):621-30. PubMed ID: 18937004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media.
    Björkeroth J; Campbell K; Malina C; Yu R; Di Bartolomeo F; Nielsen J
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21804-21812. PubMed ID: 32817546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary systems biology of amino acid biosynthetic cost in yeast.
    Barton MD; Delneri D; Oliver SG; Rattray M; Bergman CM
    PLoS One; 2010 Aug; 5(8):e11935. PubMed ID: 20808905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino Acid metabolism conflicts with protein diversity.
    Krick T; Verstraete N; Alonso LG; Shub DA; Ferreiro DU; Shub M; Sánchez IE
    Mol Biol Evol; 2014 Nov; 31(11):2905-12. PubMed ID: 25086000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Genetic regulatory mechanisms of amino acid biosynthesis in Saccharomyces cerevisiae: mechanism of translational control of GCN4].
    Harashima S
    Tanpakushitsu Kakusan Koso; 1994 Mar; 39(4):530-41. PubMed ID: 8165298
    [No Abstract]   [Full Text] [Related]  

  • 9. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose.
    Jouhten P; Pitkänen E; Pakula T; Saloheimo M; Penttilä M; Maaheimo H
    BMC Syst Biol; 2009 Oct; 3():104. PubMed ID: 19874611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis.
    Akashi H; Gojobori T
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3695-700. PubMed ID: 11904428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthetic energy cost for amino acids decreases in cancer evolution.
    Zhang H; Wang Y; Li J; Chen H; He X; Zhang H; Liang H; Lu J
    Nat Commun; 2018 Oct; 9(1):4124. PubMed ID: 30297703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular Pathway Rewiring of Yeast for Amino Acid Production.
    Liu Q; Yu T; Campbell K; Nielsen J; Chen Y
    Methods Enzymol; 2018; 608():417-439. PubMed ID: 30173772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated energy costs of biomass production in mitochondrial respiration-deficient Saccharomyces cerevisia.
    Grigaitis P; van den Bogaard SL; Teusink B
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36694952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data.
    Wu G; Nie L; Zhang W
    Curr Microbiol; 2008 Jul; 57(1):18-22. PubMed ID: 18363056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome.
    Chu HY; Hopper AK
    Mol Cell Biol; 2013 Nov; 33(21):4241-54. PubMed ID: 23979602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome.
    Grillitsch K; Connerth M; Köfeler H; Arrey TN; Rietschel B; Wagner B; Karas M; Daum G
    Biochim Biophys Acta; 2011 Dec; 1811(12):1165-76. PubMed ID: 21820081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewiring yeast metabolism to synthesize products beyond ethanol.
    Gambacorta FV; Dietrich JJ; Yan Q; Pfleger BF
    Curr Opin Chem Biol; 2020 Dec; 59():182-192. PubMed ID: 33032255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational selection and yeast proteome evolution.
    Akashi H
    Genetics; 2003 Aug; 164(4):1291-303. PubMed ID: 12930740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.
    de Groot MJL; Daran-Lapujade P; van Breukelen B; Knijnenburg TA; de Hulster EAF; Reinders MJT; Pronk JT; Heck AJR; Slijper M
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3864-3878. PubMed ID: 17975095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.