These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35042872)

  • 1. Learning in continuous action space for developing high dimensional potential energy models.
    Manna S; Loeffler TD; Batra R; Banik S; Chan H; Varughese B; Sasikumar K; Sternberg M; Peterka T; Cherukara MJ; Gray SK; Sumpter BG; Sankaranarayanan SKRS
    Nat Commun; 2022 Jan; 13(1):368. PubMed ID: 35042872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample efficient reinforcement learning with active learning for molecular design.
    Dodds M; Guo J; Löhr T; Tibo A; Engkvist O; Janet JP
    Chem Sci; 2024 Mar; 15(11):4146-4160. PubMed ID: 38487235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Representation learning for continuous action spaces is beneficial for efficient policy learning.
    Zhao T; Wang Y; Sun W; Chen Y; Niu G; Sugiyama M
    Neural Netw; 2023 Feb; 159():137-152. PubMed ID: 36566604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Reinforcement Learning-Based MPPT Control for PV Systems under Partial Shading Condition.
    Phan BC; Lai YC; Lin CE
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative Entropy Regularized Sample-Efficient Reinforcement Learning With Continuous Actions.
    Shang Z; Li R; Zheng C; Li H; Cui Y
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; PP():. PubMed ID: 37943648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BNAS: Efficient Neural Architecture Search Using Broad Scalable Architecture.
    Ding Z; Chen Y; Li N; Zhao D; Sun Z; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):5004-5018. PubMed ID: 33788694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning with Delayed Rewards-A Case Study on Inverse Defect Design in 2D Materials.
    Banik S; Loeffler TD; Batra R; Singh H; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36455-36464. PubMed ID: 34288661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-reward Reinforcement Learning Based Bond-Order Potential to Study Strain-Assisted Phase Transitions in Phosphorene.
    Koneru A; Batra R; Manna S; Loeffler TD; Chan H; Sternberg M; Avarca A; Singh H; Cherukara MJ; Sankaranarayanan SKRS
    J Phys Chem Lett; 2022 Feb; 13(7):1886-1893. PubMed ID: 35175062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manifold-Based Reinforcement Learning via Locally Linear Reconstruction.
    Xu X; Huang Z; Zuo L; He H
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):934-947. PubMed ID: 26829806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward robust and scalable deep spiking reinforcement learning.
    Akl M; Ergene D; Walter F; Knoll A
    Front Neurorobot; 2022; 16():1075647. PubMed ID: 36742191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications.
    Nguyen TT; Nguyen ND; Nahavandi S
    IEEE Trans Cybern; 2020 Sep; 50(9):3826-3839. PubMed ID: 32203045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Representation learning in the artificial and biological neural networks underlying sensorimotor integration.
    Suhaimi A; Lim AWH; Chia XW; Li C; Makino H
    Sci Adv; 2022 Jun; 8(22):eabn0984. PubMed ID: 35658033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial Policy-Based Reinforcement Learning for Anatomical Landmark Localization in 3D Medical Images.
    Abdullah Al W; Yun ID
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1245-1255. PubMed ID: 31603816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning for intensive care medicine: actionable clinical insights from novel approaches to reward shaping and off-policy model evaluation.
    Roggeveen LF; Hassouni AE; de Grooth HJ; Girbes ARJ; Hoogendoorn M; Elbers PWG;
    Intensive Care Med Exp; 2024 Mar; 12(1):32. PubMed ID: 38526681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Policy Search for the Optimal Control of Markov Decision Processes: A Novel Particle-Based Iterative Scheme.
    Manganini G; Pirotta M; Restelli M; Piroddi L; Prandini M
    IEEE Trans Cybern; 2016 Nov; 46(11):2643-2655. PubMed ID: 26513816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative modular reinforcement learning for large discrete action space problem.
    Ming F; Gao F; Liu K; Zhao C
    Neural Netw; 2023 Apr; 161():281-296. PubMed ID: 36774866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning a World Model With Multitimescale Memory Augmentation.
    Cai W; Wang T; Wang J; Sun C
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8493-8502. PubMed ID: 35254991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving real-world optimization tasks using physics-informed neural computing.
    Seo J
    Sci Rep; 2024 Jan; 14(1):202. PubMed ID: 38191893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.