These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35042891)
1. Experimental research on the spontaneous combustion of Yangquan coal induced by electrochemical oxidation of pyrite. Zhang X; Lu B; Fu X; Qiao L; Wang J; Wang L; Ding C; Gao D; Zhang J Sci Rep; 2022 Jan; 12(1):912. PubMed ID: 35042891 [TBL] [Abstract][Full Text] [Related]
2. Effects of Moisture and Associated Pyrite on the Microstructure of Anthracite Coal for Spontaneous Combustion. Wang CP; Yang NN; Xiao Y; Bai ZJ; Deng J; Shu CM ACS Omega; 2020 Oct; 5(42):27607-27617. PubMed ID: 33134724 [TBL] [Abstract][Full Text] [Related]
3. Influence of Temperature Change on the Change Law of Free Radicals in Coal. Yin Y; Zhang Y; Huang Z; Hu X; Gao Y; Shao Z; Qi X; Yang Y ACS Omega; 2021 Dec; 6(49):33685-33693. PubMed ID: 34926916 [TBL] [Abstract][Full Text] [Related]
4. Oxidation Characteristics of Functional Groups in Relation to Coal Spontaneous Combustion. Zhang Y; Zhang J; Li Y; Gao S; Yang C; Shi X ACS Omega; 2021 Mar; 6(11):7669-7679. PubMed ID: 33778277 [TBL] [Abstract][Full Text] [Related]
5. Study of the Change Laws of Free Radicals and Functional Groups during Coal Oxidation. Gao Y; Lei H; Yin X; Zhang Y; Huang Z; Yin Y; Xiao S; Wang P ACS Omega; 2023 Feb; 8(7):7102-7110. PubMed ID: 36844519 [TBL] [Abstract][Full Text] [Related]
6. Data on analysis of temperature inversion during spontaneous combustion of coal. Guo J; Wen H; Liu Y; Jin Y Data Brief; 2019 Aug; 25():104304. PubMed ID: 31440550 [TBL] [Abstract][Full Text] [Related]
7. Study on the Mechanism of Antioxidants Affecting the Spontaneous Combustion Oxidation of Coal. Zhang X; Yu C; Gao F; Lu B; Zou J ACS Omega; 2023 Jan; 8(3):3396-3403. PubMed ID: 36713716 [TBL] [Abstract][Full Text] [Related]
8. Experimental and simulation study of inert gas mixture inhibiting coal spontaneous combustion. Wang X; Wang L; Li W; Liu D Sci Rep; 2024 Feb; 14(1):4305. PubMed ID: 38383580 [TBL] [Abstract][Full Text] [Related]
9. Study on the experiment and reaction kinetics of sulfur removal from coal by microorganisms. Zhao D; Sun PP; Ai CM; Mu XZ Front Microbiol; 2023; 14():1184253. PubMed ID: 37342566 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the kinetics of spontaneous combustion of the major coal seam in Dahuangshan mining area of the Southern Junggar coalfield, Xinjiang, China. Shen L; Zeng Q Sci Rep; 2021 Jan; 11(1):876. PubMed ID: 33441618 [TBL] [Abstract][Full Text] [Related]
11. Influence of Organic Sulfur on Low-Temperature Oxidation of Coal and its Transition Characteristics. Gao F; Jia Z; Shan YF; Teng Y; Li YD; Pu XG ACS Omega; 2022 Nov; 7(44):39830-39839. PubMed ID: 36385873 [TBL] [Abstract][Full Text] [Related]
12. Quantum Chemistry Calculation Study on Chain Reaction Mechanisms and Thermodynamic Characteristics of Coal Spontaneous Combustion at Low Temperatures. Huo Y; Zhu H; He X; Fang S; Wang W ACS Omega; 2021 Nov; 6(45):30841-30855. PubMed ID: 34805713 [TBL] [Abstract][Full Text] [Related]
13. Application of Foam-gel Technique to Control CO Exposure Generated During Spontaneous Combustion of Coal in Coal Mines. Ren XW; Wang FZ; Guo Q; Zuo ZB; Fang QS J Occup Environ Hyg; 2015; 12(11):D239-45. PubMed ID: 26259722 [TBL] [Abstract][Full Text] [Related]
14. Experimental Study on the Influence of Pore Structure and Group Evolution on Spontaneous Combustion Characteristics of Coal Samples of Different Sizes During Immersion. Pi Z; Li R; Guo W; Liu X; Zhang Z; Wang Y; Zhang Y; Yin G; Li X ACS Omega; 2023 Jun; 8(25):22453-22465. PubMed ID: 37396218 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the Formation Mechanism of Hydrogen Sulfide in the 13# Coal Seam of Shaping Coal Mine. Ai C; Wang S; Sun P; Zhao S; Mu X ACS Omega; 2024 Jan; 9(2):2980-2987. PubMed ID: 38250412 [TBL] [Abstract][Full Text] [Related]
16. Experimental investigation on spontaneous combustion oxidation characteristics and stages of coal with different metamorphic degrees. Nie B; Yan H; Liu P; Chen Z; Peng C; Wang X; Yin F; Gong J; Wei Y; Lin S; Gao Q; Cao M Environ Sci Pollut Res Int; 2023 Jan; 30(3):8269-8279. PubMed ID: 36053423 [TBL] [Abstract][Full Text] [Related]
17. Effect of Water Evaporation on the Inhibition of Spontaneous Coal Combustion. Han Q; Cui C; Jiang S; Deng C; Jin Z ACS Omega; 2022 Mar; 7(8):6824-6833. PubMed ID: 35252676 [TBL] [Abstract][Full Text] [Related]
18. Study on the Variations of Key Groups and Thermal Characteristic Parameters during Coal Secondary Spontaneous Combustion. Guo J; Zhang T; Pan H ACS Omega; 2023 Jan; 8(4):4176-4186. PubMed ID: 36743016 [TBL] [Abstract][Full Text] [Related]
19. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging. Guo F; Zhong Z Environ Pollut; 2018 Aug; 239():21-29. PubMed ID: 29635091 [TBL] [Abstract][Full Text] [Related]
20. Thermogravimetric and infrared spectroscopic studies of the spontaneous combustion characteristics of different pre-oxidized lignites. Ma T; Chen X; Zhai X; Bai Y RSC Adv; 2019 Oct; 9(56):32476-32489. PubMed ID: 35529718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]