These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35043096)
1. Forecasting Covid-19 Transmission with ARIMA and LSTM Techniques in Morocco. Rguibi MA; Moussa N; Madani A; Aaroud A; Zine-Dine K SN Comput Sci; 2022; 3(2):133. PubMed ID: 35043096 [TBL] [Abstract][Full Text] [Related]
2. Nesting the SIRV model with NAR, LSTM and statistical methods to fit and predict COVID-19 epidemic trend in Africa. Liu XD; Wang W; Yang Y; Hou BH; Olasehinde TS; Feng N; Dong XP BMC Public Health; 2023 Jan; 23(1):138. PubMed ID: 36658494 [TBL] [Abstract][Full Text] [Related]
3. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
4. Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant? Devaraj J; Madurai Elavarasan R; Pugazhendhi R; Shafiullah GM; Ganesan S; Jeysree AK; Khan IA; Hossain E Results Phys; 2021 Feb; 21():103817. PubMed ID: 33462560 [TBL] [Abstract][Full Text] [Related]
5. Forecasting spread of COVID-19 using google trends: A hybrid GWO-deep learning approach. Prasanth S; Singh U; Kumar A; Tikkiwal VA; Chong PHJ Chaos Solitons Fractals; 2021 Jan; 142():110336. PubMed ID: 33110297 [TBL] [Abstract][Full Text] [Related]
6. Forecasting COVID-19 pandemic in Alberta, Canada using modified ARIMA models. Sun J Comput Methods Programs Biomed Update; 2021; 1():100029. PubMed ID: 34604831 [TBL] [Abstract][Full Text] [Related]
7. Statistical analysis of forecasting COVID-19 for upcoming month in Pakistan. Yousaf M; Zahir S; Riaz M; Hussain SM; Shah K Chaos Solitons Fractals; 2020 Sep; 138():109926. PubMed ID: 32501377 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches. Kırbaş İ; Sözen A; Tuncer AD; Kazancıoğlu FŞ Chaos Solitons Fractals; 2020 Sep; 138():110015. PubMed ID: 32565625 [TBL] [Abstract][Full Text] [Related]
10. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Xu D; Zhang Q; Ding Y; Zhang D Environ Sci Pollut Res Int; 2022 Jan; 29(3):4128-4144. PubMed ID: 34403057 [TBL] [Abstract][Full Text] [Related]
11. COVID-19 in Bangladesh: A Deeper Outlook into The Forecast with Prediction of Upcoming Per Day Cases Using Time Series. Mohammad Masum AK; Khushbu SA; Keya M; Abujar S; Hossain SA Procedia Comput Sci; 2020; 178():291-300. PubMed ID: 33520018 [TBL] [Abstract][Full Text] [Related]
12. Forecasting of daily new lumpy skin disease cases in Thailand at different stages of the epidemic using fuzzy logic time series, NNAR, and ARIMA methods. Punyapornwithaya V; Arjkumpa O; Buamithup N; Kuatako N; Klaharn K; Sansamur C; Jampachaisri K Prev Vet Med; 2023 Aug; 217():105964. PubMed ID: 37393704 [TBL] [Abstract][Full Text] [Related]
13. Forecasting of Covid-19 positive cases in Indonesia using long short-term memory (LSTM). Sunjaya BA; Permai SD; Gunawan AAS Procedia Comput Sci; 2023; 216():177-185. PubMed ID: 36643183 [TBL] [Abstract][Full Text] [Related]
14. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chimmula VKR; Zhang L Chaos Solitons Fractals; 2020 Jun; 135():109864. PubMed ID: 32390691 [TBL] [Abstract][Full Text] [Related]
15. Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China. Zhang R; Song H; Chen Q; Wang Y; Wang S; Li Y PLoS One; 2022; 17(1):e0262009. PubMed ID: 35030203 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced Autoregressive Integrated Moving Average (ARIMA) Model. Singh RK; Rani M; Bhagavathula AS; Sah R; Rodriguez-Morales AJ; Kalita H; Nanda C; Sharma S; Sharma YD; Rabaan AA; Rahmani J; Kumar P JMIR Public Health Surveill; 2020 May; 6(2):e19115. PubMed ID: 32391801 [TBL] [Abstract][Full Text] [Related]
17. Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran. Wang P; Zheng X; Ai G; Liu D; Zhu B Chaos Solitons Fractals; 2020 Nov; 140():110214. PubMed ID: 32839643 [TBL] [Abstract][Full Text] [Related]
18. Prognosticating the Spread of Covid-19 Pandemic Based on Optimal Arima Estimators. Sandhir V; Kumar V; Kumar V Endocr Metab Immune Disord Drug Targets; 2021; 21(4):586-591. PubMed ID: 33121426 [TBL] [Abstract][Full Text] [Related]
19. Multi-Regional Modeling of Cumulative COVID-19 Cases Integrated with Environmental Forest Knowledge Estimation: A Deep Learning Ensemble Approach. Alamrouni A; Aslanova F; Mati S; Maccido HS; Jibril AA; Usman AG; Abba SI Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055559 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the impact of COVID-19 on traffic congestion and safety skills using structural equation modeling (SEM) and Auto-Regressive Integrated Moving Average (ARIMA). AlKheder S; Al-Mukhaizeem M; Al-Saleh H; Bahman E; Al-Ghanim S Int J Inj Contr Saf Promot; 2023 Dec; 30(4):593-611. PubMed ID: 37565729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]