These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 35043143)

  • 1. Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types.
    Wu W; Zhang W; Ma X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data.
    Wu W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):566-575. PubMed ID: 35316190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data.
    Wang H; Liu Z; Ma X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3134-3145. PubMed ID: 38709615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scMNMF: a novel method for single-cell multi-omics clustering based on matrix factorization.
    Qiu Y; Guo D; Zhao P; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning discriminative and structural samples for rare cell types with deep generative model.
    Wang H; Ma X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35914950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMFLRR: Clustering scRNA-Seq Data by Integrating Nonnegative Matrix Factorization With Low Rank Representation.
    Zhang W; Xue X; Zheng X; Fan Z
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):1394-1405. PubMed ID: 34310328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data.
    Zou G; Lin Y; Han T; Ou-Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36047285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles.
    Jin S; Zhang L; Nie Q
    Genome Biol; 2020 Feb; 21(1):25. PubMed ID: 32014031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EpiScanpy: integrated single-cell epigenomic analysis.
    Danese A; Richter ML; Chaichoompu K; Fischer DS; Theis FJ; Colomé-Tatché M
    Nat Commun; 2021 Sep; 12(1):5228. PubMed ID: 34471111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust joint clustering of multi-omics single-cell data via multi-modal high-order neighborhood Laplacian matrix optimization.
    Jiang H; Zhan S; Ching WK; Chen L
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37382572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data.
    Zuo C; Dai H; Chen L
    Bioinformatics; 2021 Nov; 37(22):4091-4099. PubMed ID: 34028557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scMHNN: a novel hypergraph neural network for integrative analysis of single-cell epigenomic, transcriptomic and proteomic data.
    Li W; Xiang B; Yang F; Rong Y; Yin Y; Yao J; Zhang H
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data.
    Zeng P; Wangwu J; Lin Z
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33279962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.