These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 35043282)
1. Creation of Hydrochlorothiazide Pharmaceutical Cocrystals Via Hot-Melt Extrusion for Enhanced Solubility and Permeability. Narala S; Nyavanandi D; Alzahrani A; Bandari S; Zhang F; Repka MA AAPS PharmSciTech; 2022 Jan; 23(1):56. PubMed ID: 35043282 [TBL] [Abstract][Full Text] [Related]
2. Cocrystals of Hydrochlorothiazide: Solubility and Diffusion/Permeability Enhancements through Drug-Coformer Interactions. Sanphui P; Devi VK; Clara D; Malviya N; Ganguly S; Desiraju GR Mol Pharm; 2015 May; 12(5):1615-22. PubMed ID: 25800383 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of high melting point hydrochlorothiazide processing via cocrystal formation by hot melt extrusion paired fused filament fabrication as a 3D-printed cocrystal tablet. Nyavanandi D; Mandati P; Narala S; Alzahrani A; Kolimi P; Pradhan A; Bandari S; Repka MA Int J Pharm; 2022 Nov; 628():122283. PubMed ID: 36244563 [TBL] [Abstract][Full Text] [Related]
4. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion. Boksa K; Otte A; Pinal R J Pharm Sci; 2014 Sep; 103(9):2904-2910. PubMed ID: 24807421 [TBL] [Abstract][Full Text] [Related]
5. Superior Solubility and Dissolution of Zaltoprofen via Pharmaceutical Cocrystals. Panzade P; Shendarkar G Turk J Pharm Sci; 2019 Sep; 16(3):310-316. PubMed ID: 32454729 [TBL] [Abstract][Full Text] [Related]
6. Polymer-Assisted Aripiprazole-Adipic Acid Cocrystals Produced by Hot Melt Extrusion Techniques. Butreddy A; Sarabu S; Bandari S; Dumpa N; Zhang F; Repka MA Cryst Growth Des; 2020 Jul; 20(7):4335-4345. PubMed ID: 33935595 [TBL] [Abstract][Full Text] [Related]
7. Melt Crystallization of Celecoxib-Carbamazepine Cocrystals with the Synchronized Release of Drugs. Chen A; Cai P; Luo M; Guo M; Cai T Pharm Res; 2023 Feb; 40(2):567-577. PubMed ID: 36348133 [TBL] [Abstract][Full Text] [Related]
8. Improved pharmaceutical properties of ritonavir through co-crystallization approach with liquid-assisted grinding method. Chaudhari KR; Savjani JK; Savjani KT; Shah H Drug Dev Ind Pharm; 2021 Oct; 47(10):1633-1642. PubMed ID: 35156497 [TBL] [Abstract][Full Text] [Related]
9. Novel Aceclofenac Cocrystals with l-Cystine: Virtual Coformer Screening, Mechanochemical Synthesis, and Physicochemical Investigations. Kumar S; Gupta A; Prasad R; Singh S Curr Drug Deliv; 2021; 18(1):88-100. PubMed ID: 32807053 [TBL] [Abstract][Full Text] [Related]
10. The role of the polymer matrix in solvent-free hot melt extrusion continuous process for mechanochemical synthesis of pharmaceutical cocrystal. Gajda M; Nartowski KP; Pluta J; Karolewicz B Eur J Pharm Biopharm; 2018 Oct; 131():48-59. PubMed ID: 30205892 [TBL] [Abstract][Full Text] [Related]
11. A Comparative Assessment of Cocrystal and Amorphous Solid Dispersion Printlets Developed by Hot Melt Extrusion Paired Fused Deposition Modeling for Dissolution Enhancement and Stability of Ibuprofen. Mandati P; Nyavanandi D; Narala S; Alzahrani A; Vemula SK; Repka MA AAPS PharmSciTech; 2023 Oct; 24(7):203. PubMed ID: 37783961 [TBL] [Abstract][Full Text] [Related]
12. A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: myricetin cocrystals and a ternary phase diagram. Hong C; Xie Y; Yao Y; Li G; Yuan X; Shen H Pharm Res; 2015 Jan; 32(1):47-60. PubMed ID: 24939640 [TBL] [Abstract][Full Text] [Related]
13. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Dhumal RS; Kelly AL; York P; Coates PD; Paradkar A Pharm Res; 2010 Dec; 27(12):2725-33. PubMed ID: 20872053 [TBL] [Abstract][Full Text] [Related]
14. Continuous Manufacture and Scale-Up of Theophylline-Nicotinamide Cocrystals. Ross SA; Hurt AP; Antonijevic M; Bouropoulos N; Ward A; Basford P; McAllister M; Douroumis D Pharmaceutics; 2021 Mar; 13(3):. PubMed ID: 33804705 [TBL] [Abstract][Full Text] [Related]
15. Impact of polymeric excipient on cocrystal formation via hot-melt extrusion and subsequent downstream processing. Karimi-Jafari M; Ziaee A; Iqbal J; O'Reilly E; Croker D; Walker G Int J Pharm; 2019 Jul; 566():745-755. PubMed ID: 31212053 [TBL] [Abstract][Full Text] [Related]
16. Novel furosemide cocrystals and selection of high solubility drug forms. Goud NR; Gangavaram S; Suresh K; Pal S; Manjunatha SG; Nambiar S; Nangia A J Pharm Sci; 2012 Feb; 101(2):664-80. PubMed ID: 22081478 [TBL] [Abstract][Full Text] [Related]
17. Pharmaceutical characterisation and evaluation of cocrystals: Importance of in vitro dissolution conditions and type of coformer. Tomaszewska I; Karki S; Shur J; Price R; Fotaki N Int J Pharm; 2013 Sep; 453(2):380-8. PubMed ID: 23727143 [TBL] [Abstract][Full Text] [Related]
18. Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Enhancing Cocrystal Yield. Li S; Yu T; Tian Y; Lagan C; Jones DS; Andrews GP Mol Pharm; 2018 Sep; 15(9):3741-3754. PubMed ID: 29166563 [TBL] [Abstract][Full Text] [Related]
19. Exploring potential coformers for oxyresveratrol using principal component analysis. Ouiyangkul P; Tantishaiyakul V; Hirun N Int J Pharm; 2020 Sep; 587():119630. PubMed ID: 32652183 [TBL] [Abstract][Full Text] [Related]
20. Effects of Coformer and Polymer on Particle Surface Solution-Mediated Phase Transformation of Cocrystals in Aqueous Media. Omori M; Watanabe T; Uekusa T; Oki J; Inoue D; Sugano K Mol Pharm; 2020 Oct; 17(10):3825-3836. PubMed ID: 32870691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]