These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 35043282)
21. Continuous, one-step synthesis of pharmaceutical cocrystals via hot melt extrusion from neat to matrix-assisted processing - State of the art. Gajda M; Nartowski KP; Pluta J; Karolewicz B Int J Pharm; 2019 Mar; 558():426-440. PubMed ID: 30664997 [TBL] [Abstract][Full Text] [Related]
22. A New Ferulic Acid-Nicotinamide Cocrystal With Improved Solubility and Dissolution Performance. Chaves Júnior JV; Dos Santos JAB; Lins TB; de Araújo Batista RS; de Lima Neto SA; de Santana Oliveira A; Nogueira FHA; Gomes APB; de Sousa DP; de Souza FS; Aragão CFS J Pharm Sci; 2020 Mar; 109(3):1330-1337. PubMed ID: 31821823 [TBL] [Abstract][Full Text] [Related]
23. Continuous Synthesis of Cinnarizine Salt with Malic Acid by Applying Green Chemistry Using Water-Assisted Twin Screw Extrusion. Vasoya JM; Lee HL; Lee T; Serajuddin ATM Mol Pharm; 2023 Oct; 20(10):5160-5172. PubMed ID: 37646101 [TBL] [Abstract][Full Text] [Related]
24. Engineering of pharmaceutical cocrystals in an excipient matrix: Spray drying versus hot melt extrusion. Walsh D; Serrano DR; Worku ZA; Madi AM; O'Connell P; Twamley B; Healy AM Int J Pharm; 2018 Nov; 551(1-2):241-256. PubMed ID: 30223079 [TBL] [Abstract][Full Text] [Related]
25. Effect of Coformer Selection on In Vitro and In Vivo Performance of Adefovir Dipivoxil Cocrystals. Li L; Pang Z; Ma K; Gao Y; Zheng D; Wei Y; Zhang J; Qian S Pharm Res; 2021 Oct; 38(10):1777-1791. PubMed ID: 34729701 [TBL] [Abstract][Full Text] [Related]
26. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals. Ren S; Liu M; Hong C; Li G; Sun J; Wang J; Zhang L; Xie Y Acta Pharm Sin B; 2019 Jan; 9(1):59-73. PubMed ID: 30766778 [TBL] [Abstract][Full Text] [Related]
27. Cocrystal Construction Between Rosuvastatin Calcium and L-asparagine with Enhanced Solubility and Dissolution Rate. Vemuri VD; Lankalapalli S Turk J Pharm Sci; 2021 Dec; 18(6):790-798. PubMed ID: 34979738 [TBL] [Abstract][Full Text] [Related]
28. Hansen solubility parameter as a tool to predict cocrystal formation. Mohammad MA; Alhalaweh A; Velaga SP Int J Pharm; 2011 Apr; 407(1-2):63-71. PubMed ID: 21256944 [TBL] [Abstract][Full Text] [Related]
29. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Liu X; Lu M; Guo Z; Huang L; Feng X; Wu C Pharm Res; 2012 Mar; 29(3):806-17. PubMed ID: 22009589 [TBL] [Abstract][Full Text] [Related]
30. Development and Characterization of Dapsone Cocrystal Prepared by Scalable Production Methods. do Amaral LH; do Carmo FA; Amaro MI; de Sousa VP; da Silva LCRP; de Almeida GS; Rodrigues CR; Healy AM; Cabral LM AAPS PharmSciTech; 2018 Aug; 19(6):2687-2699. PubMed ID: 29968042 [TBL] [Abstract][Full Text] [Related]
31. Pharmaceutical salts/cocrystals of enoxacin with dicarboxylic acids: Enhancing in vitro antibacterial activity of enoxacin by improving the solubility and permeability. Liu L; Zou D; Zhang Y; Zhang Q; Feng Y; Guo Y; Liu Y; Zhang X; Cheng G; Wang C; Zhang Y; Zhang L; Wu L; Chang L; Su X; Duan Y; Zhang Y; Liu M Eur J Pharm Biopharm; 2020 Sep; 154():62-73. PubMed ID: 32645384 [TBL] [Abstract][Full Text] [Related]
32. Vibrational Spectroscopy for Cocrystals Screening. A Comparative Study. Rodrigues M; Lopes J; Sarraguça M Molecules; 2018 Dec; 23(12):. PubMed ID: 30544751 [TBL] [Abstract][Full Text] [Related]
33. Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties. Emami S; Adibkia K; Barzegar-Jalali M; Siahi-Shadbad M Pharm Dev Technol; 2019 Feb; 24(2):199-210. PubMed ID: 29557714 [TBL] [Abstract][Full Text] [Related]
34. In Silico Screening as a Tool to Prepare Drug-Drug Cocrystals of Ibrutinib-Ketoconazole: a Strategy to Enhance Their Solubility Profiles and Oral Bioavailability. Kara DD; Bangera PD; Mehta CH; Tanvi K; Rathnanand M AAPS PharmSciTech; 2023 Aug; 24(6):164. PubMed ID: 37552343 [TBL] [Abstract][Full Text] [Related]
35. Enhancing the Pharmaceutical Behavior of Nateglinide by Cocrystallization: Physicochemical Assessment of Cocrystal Formation and Informed Use of Differential Scanning Calorimetry for Its Quantitative Characterization. Bruni G; Maggi L; Mustarelli P; Sakaj M; Friuli V; Ferrara C; Berbenni V; Girella A; Milanese C; Marini A J Pharm Sci; 2019 Apr; 108(4):1529-1539. PubMed ID: 30476510 [TBL] [Abstract][Full Text] [Related]
36. Designing of Stable Co-crystals of Zoledronic Acid Using Suitable Coformers. Varma A; Laxmi P; Pai A; Pai G; Sg V; Badamane Sathyanarayana M Chem Pharm Bull (Tokyo); 2019; 67(8):816-823. PubMed ID: 31366831 [TBL] [Abstract][Full Text] [Related]
37. Tuning the cocrystal yield in matrix-assisted cocrystallisation via hot melt extrusion: A case of theophylline-nicotinamide cocrystal. Gajda M; Nartowski KP; Pluta J; Karolewicz B Int J Pharm; 2019 Oct; 569():118579. PubMed ID: 31362095 [TBL] [Abstract][Full Text] [Related]
38. Solid state manipulation of lornoxicam for cocrystals--physicochemical characterization. Nijhawan M; Santhosh A; Babu PR; Subrahmanyam CV Drug Dev Ind Pharm; 2014 Sep; 40(9):1163-72. PubMed ID: 23829186 [TBL] [Abstract][Full Text] [Related]
39. Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Feasibility Studies and Physicochemical Characterization. Li S; Yu T; Tian Y; McCoy CP; Jones DS; Andrews GP Mol Pharm; 2016 Sep; 13(9):3054-68. PubMed ID: 27314248 [TBL] [Abstract][Full Text] [Related]
40. Structural Characterization and Pharmaceutical Properties of Three Novel Cocrystals of Ethenzamide With Aliphatic Dicarboxylic Acids. Kozak A; Marek PH; Pindelska E J Pharm Sci; 2019 Apr; 108(4):1476-1485. PubMed ID: 30414866 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]