BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35043353)

  • 1. Immobilized enzymes and cell systems: an approach to the removal of phenol and the challenges to incorporate nanoparticle-based technology.
    Escobedo-Morales G; Hernández-Beltrán JU; Nagamani Balagurusamy ; Hernández-Almanza AY; Luévanos-Escareño MP
    World J Microbiol Biotechnol; 2022 Jan; 38(3):42. PubMed ID: 35043353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of horseradish peroxidase on electrospun magnetic nanofibers for phenol removal.
    Li J; Chen X; Xu D; Pan K
    Ecotoxicol Environ Saf; 2019 Apr; 170():716-721. PubMed ID: 30580166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater.
    Duan X; Corgié SC; Aneshansley DJ; Wang P; Walker LP; Giannelis EP
    Chemphyschem; 2014 Apr; 15(5):974-80. PubMed ID: 24692298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilized microbial nanoparticles for biosorption.
    Giese EC; Silva DDV; Costa AFM; Almeida SGC; Dussán KJ
    Crit Rev Biotechnol; 2020 Aug; 40(5):653-666. PubMed ID: 32299253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review.
    Yaashikaa PR; Devi MK; Kumar PS
    Chemosphere; 2022 Jul; 299():134390. PubMed ID: 35339523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed.
    Wang F; Hu Y; Guo C; Huang W; Liu CZ
    Bioresour Technol; 2012 Apr; 110():120-4. PubMed ID: 22382292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor.
    Basak B; Jeon BH; Kurade MB; Saratale GD; Bhunia B; Chatterjee PK; Dey A
    Ecotoxicol Environ Saf; 2019 Sep; 180():317-325. PubMed ID: 31100595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of phenol in phenolic resin wastewater by a novel biomaterial: the Phanerochaete chrysosporium pellet containing chlamydospore-like cells.
    Hailei W; Ping L; Yu Q; Hui Y
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):5153-64. PubMed ID: 26860939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications.
    Darwesh OM; Ali SS; Matter IA; Elsamahy T; Mahmoud YA
    Methods Enzymol; 2020; 630():481-502. PubMed ID: 31931999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of aqueous phenol using immobilized enzymes in a bench scale and pilot scale three-phase fluidized bed reactor.
    Ensuncho L; Alvarez-Cuenca M; Legge RL
    Bioprocess Biosyst Eng; 2005 May; 27(3):185-91. PubMed ID: 15765216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.
    Johnson PA; Park HJ; Driscoll AJ
    Methods Mol Biol; 2011; 679():183-91. PubMed ID: 20865397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel integration system of magnetically immobilized cells and a pair of graphite plate-stainless iron mesh electrodes for the bioremediation of coking wastewater.
    Jiang B; Tan L; Ning S; Shi S
    Bioresour Technol; 2016 Sep; 216():684-90. PubMed ID: 27289060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors.
    Ruan B; Wu P; Chen M; Lai X; Chen L; Yu L; Gong B; Kang C; Dang Z; Shi Z; Liu Z
    Ecotoxicol Environ Saf; 2018 Oct; 162():103-111. PubMed ID: 29990721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protecting Enzymatic Activity via Zwitterionic Nanocapsulation for the Removal of Phenol Compound from Wastewater.
    Zheng G; Liu S; Zha J; Zhang P; Xu X; Chen Y; Jiang S
    Langmuir; 2019 Feb; 35(5):1858-1863. PubMed ID: 30080053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized laccase on polyimide aerogels for removal of carbamazepine.
    Simón-Herrero C; Naghdi M; Taheran M; Kaur Brar S; Romero A; Valverde JL; Avalos Ramirez A; Sánchez-Silva L
    J Hazard Mater; 2019 Aug; 376():83-90. PubMed ID: 31125942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater.
    Jiang Y; Wei L; Zhang H; Yang K; Wang H
    Bioresour Technol; 2016 Oct; 218():146-52. PubMed ID: 27359064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the biodegradation of phenol in wastewaters from the chemical industry by covalently immobilized Trichosporon cutaneum cells.
    Yotova L; Tzibranska I; Tileva F; Markx GH; Georgieva N
    J Ind Microbiol Biotechnol; 2009 Mar; 36(3):367-72. PubMed ID: 19052785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol removal from refinery wastewater by mutant recombinant horseradish peroxidase.
    Asad S; Dabirmanesh B; Khajeh K
    Biotechnol Appl Biochem; 2014; 61(2):226-9. PubMed ID: 24112382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of phenol from aqueous solution using acid-modified Pseudomonas putida-sepiolite/ZIF-8 bio-nanocomposites.
    Dong R; Chen D; Li N; Xu Q; Li H; He J; Lu J
    Chemosphere; 2020 Jan; 239():124708. PubMed ID: 31505442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of magnetic nanoparticles in smart enzyme immobilization.
    Vaghari H; Jafarizadeh-Malmiri H; Mohammadlou M; Berenjian A; Anarjan N; Jafari N; Nasiri S
    Biotechnol Lett; 2016 Feb; 38(2):223-33. PubMed ID: 26472272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.