These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35043353)

  • 21. Potential applications of enzymes immobilized on/in nano materials: A review.
    Ansari SA; Husain Q
    Biotechnol Adv; 2012; 30(3):512-23. PubMed ID: 21963605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilization of polyphenol oxidase on chitosan-SiO2 gel for removal of aqueous phenol.
    Shao J; Ge H; Yang Y
    Biotechnol Lett; 2007 Jun; 29(6):901-5. PubMed ID: 17417695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immobilization of laccase by 3D bioprinting and its application in the biodegradation of phenolic compounds.
    Liu J; Shen X; Zheng Z; Li M; Zhu X; Cao H; Cui C
    Int J Biol Macromol; 2020 Dec; 164():518-525. PubMed ID: 32693137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads.
    Bayramoğlu G; Arica MY
    J Hazard Mater; 2008 Aug; 156(1-3):148-55. PubMed ID: 18207637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immobilization of halophilic yeast for effective removal of phenol in hypersaline conditions.
    Jiang Y; Yang K; Deng T; Ji B; Shang Y; Wang H
    Water Sci Technol; 2018 Feb; 77(3-4):706-713. PubMed ID: 29431715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds.
    Liu Y; Zeng Z; Zeng G; Tang L; Pang Y; Li Z; Liu C; Lei X; Wu M; Ren P; Liu Z; Chen M; Xie G
    Bioresour Technol; 2012 Jul; 115():21-6. PubMed ID: 22137272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater.
    Arca-Ramos A; Ammann EM; Gasser CA; Nastold P; Eibes G; Feijoo G; Lema JM; Moreira MT; Corvini PF
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3217-28. PubMed ID: 26490891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenolic wastewater treatment through extractive recovery coupled with biodegradation in a two-phase partitioning membrane bioreactor.
    Praveen P; Loh KC
    Chemosphere; 2015 Dec; 141():176-82. PubMed ID: 26210322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient remediation of meropenem using Bacillus tropicus EMB20 β-lactamase immobilized on magnetic nanoparticles.
    Fatima H; Bhattacharya A; Khare SK
    J Environ Manage; 2023 Mar; 329():117054. PubMed ID: 36549054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal.
    Aydemir T; Güler S
    Artif Cells Nanomed Biotechnol; 2015; 43(6):425-32. PubMed ID: 26167845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of immobilized horseradish peroxidase onto modified acrylonitrile copolymer membrane in removing of phenol from water.
    Vasileva N; Godjevargova T; Ivanova D; Gabrovska K
    Int J Biol Macromol; 2009 Mar; 44(2):190-4. PubMed ID: 19133289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community.
    Zhang D; Berry JP; Zhu D; Wang Y; Chen Y; Jiang B; Huang S; Langford H; Li G; Davison PA; Xu J; Aries E; Huang WE
    ISME J; 2015 Mar; 9(3):603-14. PubMed ID: 25191996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A reusable immobilization matrix for the biodegradation of phenol at 5000 mg/L.
    Li N; Jiang J; Chen D; Xu Q; Li H; Lu J
    Sci Rep; 2015 Mar; 5():8628. PubMed ID: 25733015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laccases to take on the challenge of emerging organic contaminants in wastewater.
    Gasser CA; Ammann EM; Shahgaldian P; Corvini PF
    Appl Microbiol Biotechnol; 2014 Dec; 98(24):9931-52. PubMed ID: 25359481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanocapsulation of horseradish peroxidase (HRP) enhances enzymatic performance in removing phenolic compounds.
    Liu S; Huang B; Zheng G; Zhang P; Li J; Yang B; Chen Y; Liang L
    Int J Biol Macromol; 2020 May; 150():814-822. PubMed ID: 32035963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inactivation of enzyme laccase and role of cosubstrate oxygen in enzymatic removal of phenol from water.
    Dasgupta S; Taylor KE; Bewtra JK; Biswas N
    Water Environ Res; 2007 Aug; 79(8):858-67. PubMed ID: 17824532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review.
    Sutaoney P; Pandya S; Gajarlwar D; Joshi V; Ghosh P
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86499-86527. PubMed ID: 35771325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review.
    Bilal M; Zhao Y; Rasheed T; Iqbal HMN
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2530-2544. PubMed ID: 30201561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of the robust and recyclable tyrosinase-harboring biocatalyst using ethylenediamine functionalized superparamagnetic nanoparticles: nanocarrier characterization and immobilized enzyme properties.
    Abdollahi K; Yazdani F; Panahi R
    J Biol Inorg Chem; 2019 Oct; 24(7):943-959. PubMed ID: 31359184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scale.
    Gasser CA; Yu L; Svojitka J; Wintgens T; Ammann EM; Shahgaldian P; Corvini PF; Hommes G
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3305-16. PubMed ID: 24305739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.