These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35043630)
1. Detrimental Impact of λ-Cyhalothrin on the Biocontrol Efficacy of Qiong Y; Linfa Q; Shu X; Longyu Y; Bingxu C J Agric Food Chem; 2022 Feb; 70(4):1037-1046. PubMed ID: 35043630 [TBL] [Abstract][Full Text] [Related]
2. Decreased cuticular penetration minimizes the impact of the pyrethroid insecticide λ-cyhalothrin on the insect predator Eocanthecona furcellata. Pang R; Chen B; Wang S; Chi Y; Huang S; Xing D; Yao Q Ecotoxicol Environ Saf; 2023 Jan; 249():114369. PubMed ID: 36508800 [TBL] [Abstract][Full Text] [Related]
3. Predatory stink bug, Eocanthecona furcellata (Wolff) responses to oral exposure route of λ-cyhalothrin via sex-specific modulation manner. Yao Q; Quan L; Wang S; Xing D; Chen B; Lu K Pestic Biochem Physiol; 2023 May; 192():105381. PubMed ID: 37105612 [TBL] [Abstract][Full Text] [Related]
4. Sublethal effect of chlorpyrifos on predatory behavior and physiology of Eocanthecona furcellata (Hemiptera: Pentatomidae). Xu S; Yao Q; Quan L; Dong Y; Chen B; Zeng D J Econ Entomol; 2024 Feb; 117(1):156-166. PubMed ID: 37978042 [TBL] [Abstract][Full Text] [Related]
5. Prey Foraging Under Sublethal Lambda-Cyhalothrin Exposure on Pyrethroid-Susceptible and -Resistant Lady Beetles (Eriopis connexa (Coleoptera: Coccinelidae)). D'Ávila VA; Reis LC; Barbosa WF; Cutler GC; Torres JB; Guedes RNC J Econ Entomol; 2018 May; 111(3):1042-1047. PubMed ID: 29474651 [TBL] [Abstract][Full Text] [Related]
6. Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects. Lawler SP; Dritz DA; Christiansen JA; Cornel AJ Pest Manag Sci; 2007 Mar; 63(3):234-40. PubMed ID: 16900577 [TBL] [Abstract][Full Text] [Related]
7. Impact of intraguild predation and lambda-cyhalothrin on predation efficacy of three acarophagous predators. Provost C; Coderre D; Lucas E; Chouinard G; Bostanian NJ Pest Manag Sci; 2005 Jun; 61(6):532-8. PubMed ID: 15712376 [TBL] [Abstract][Full Text] [Related]
8. Effects of Diamide Insecticides on Predators in Soybean. Whalen RA; Herbert DA; Malone S; Kuhar TP; Brewster CC; Reisig DD J Econ Entomol; 2016 Oct; 109(5):2014-9. PubMed ID: 27522043 [TBL] [Abstract][Full Text] [Related]
9. Oebalus pugnax (Hemiptera: Pentatomidae) resistance to lambda-cyhalothrin in Texas and efficacy of 2 alternative insecticides in grain sorghum. Gray DD; Biles S; Bernaola L; Mays DT; Walker W; Towles T; Kerns D; Ludwick DC J Econ Entomol; 2024 Oct; 117(5):2060-2069. PubMed ID: 39021149 [TBL] [Abstract][Full Text] [Related]
10. Activation of CncC pathway by ROS burst regulates cytochrome P450 CYP6AB12 responsible for λ-cyhalothrin tolerance in Spodoptera litura. Lu K; Cheng Y; Li W; Li Y; Zeng R; Song Y J Hazard Mater; 2020 Apr; 387():121698. PubMed ID: 31791865 [TBL] [Abstract][Full Text] [Related]
11. Acute lethal and sublethal effects of four insecticides on the lacewing (Chrysoperla sinica Tjeder). Shan YX; Zhu Y; Li JJ; Wang NM; Yu QT; Xue CB Chemosphere; 2020 Jul; 250():126321. PubMed ID: 32135440 [TBL] [Abstract][Full Text] [Related]
12. Predation and behavioral changes in the neotropical lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) exposed to lambda-cyhalothrin. Luna RF; Bestete LR; Torres JB; da Silva-Torres CSA Ecotoxicology; 2018 Aug; 27(6):689-702. PubMed ID: 29797169 [TBL] [Abstract][Full Text] [Related]
13. Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance. Rodrigues AR; Spindola AF; Torres JB; Siqueira HA; Colares F Ecotoxicol Environ Saf; 2013 Oct; 96():53-60. PubMed ID: 23856123 [TBL] [Abstract][Full Text] [Related]
14. Laboratory Selection, Cross-Resistance, Risk Assessment to Lambda-Cyhalothrin Resistance, and Monitoring of Insecticide Resistance for Plant Bug Lygus pratensis (Hemiptera: Miridae) in Farming-Pastoral Ecotones of Northern China. Tan Y; Ma Y; Jia B; Homem RA; Williamson MS; Gao SJ; Han HB; Xiang KF; Sun XT; Gao X; Pang BP J Econ Entomol; 2021 Apr; 114(2):891-902. PubMed ID: 33503252 [TBL] [Abstract][Full Text] [Related]
15. JH degradation pathway participates in hormonal regulation of larval development of Bombyx mori following λ-cyhalothrin exposure. Su Y; Wang W; Dai Y; Qi R; Gu H; Guo X; Liu X; Ren Y; Li F; Li B; Sun H Chemosphere; 2024 Feb; 349():140871. PubMed ID: 38056714 [TBL] [Abstract][Full Text] [Related]
16. Sublethal insecticide exposure of an herbivore alters the response of its predator. Müller T; Gesing MA; Segeler M; Müller C Environ Pollut; 2019 Apr; 247():39-45. PubMed ID: 30654252 [TBL] [Abstract][Full Text] [Related]
17. Direct and delayed effects of exposure to a sublethal concentration of the insecticide λ-cyhalothrin on food consumption and reproduction of a leaf beetle. Wolz M; Schrader A; Müller C Sci Total Environ; 2021 Mar; 760():143381. PubMed ID: 33172643 [TBL] [Abstract][Full Text] [Related]
18. Total effects of contact and residual exposure of bifenthrin and λ-cyhalothrin on the predatory mite Galendromus occidentalis (Acari: Phytoseiidae). Hamby KA; Alifano JA; Zalom FG Exp Appl Acarol; 2013 Oct; 61(2):183-93. PubMed ID: 23446744 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome and RNA interference reveal CYP6DC1 and CYP380C47 related to lambda-cyhalothrin resistance in Rhopalosiphum padi. Wang K; Zhao J; Han Z; Chen M Pestic Biochem Physiol; 2022 May; 183():105088. PubMed ID: 35430059 [TBL] [Abstract][Full Text] [Related]
20. Effects of Plant Species, Insecticide, and Exposure Time On the Efficacy Of Barrier Treatments Against McMillan BE; Bova JE; Brewster CC; Gallagher NT; Paulson SL J Am Mosq Control Assoc; 2018 Dec; 34(4):281-290. PubMed ID: 31442145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]