These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Identification of novel antiplasmodial compound by hierarquical virtual screening and Costa Júnior DB; Araújo JSC; de Mattos Oliveira L; Neri FSM; Moreira POL; Taranto AG; Fonseca AL; de Pilla Varotti F; Leite FHA J Biomol Struct Dyn; 2021 Jun; 39(9):3378-3386. PubMed ID: 32364060 [TBL] [Abstract][Full Text] [Related]
24. SAR and pharmacophore models for the rhodanine inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. Kumar G; Banerjee T; Kapoor N; Surolia N; Surolia A IUBMB Life; 2010 Mar; 62(3):204-13. PubMed ID: 20131353 [TBL] [Abstract][Full Text] [Related]
25. Dynamics of Plasmodium falciparum enoyl-ACP reductase and implications on drug discovery. Lindert S; McCammon JA Protein Sci; 2012 Nov; 21(11):1734-45. PubMed ID: 22969045 [TBL] [Abstract][Full Text] [Related]
26. Oplodiol and nitidine as potential inhibitors of Akakpo L; Gasu EN; Mensah JO; Borquaye LS J Biomol Struct Dyn; 2024; 42(4):1655-1669. PubMed ID: 37194452 [TBL] [Abstract][Full Text] [Related]
27. A rational approach to identify inhibitors of Mycobacterium tuberculosis enoyl acyl carrier protein reductase. Chhabria MT; Parmar KB; Brahmkshatriya PS Curr Pharm Des; 2013; 19(21):3878-83. PubMed ID: 23477735 [TBL] [Abstract][Full Text] [Related]
28. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Thillainayagam M; Malathi K; Ramaiah S J Biomol Struct Dyn; 2018 Nov; 36(15):3993-4009. PubMed ID: 29132266 [TBL] [Abstract][Full Text] [Related]
29. Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH). Saxena S; Durgam L; Guruprasad L J Biomol Struct Dyn; 2019 Apr; 37(7):1783-1799. PubMed ID: 29718775 [TBL] [Abstract][Full Text] [Related]
30. Computational studies to explore inhibitors against the cyclin-dependent kinase 12/13 enzyme: an Ghosh A; Jha PC; Manhas A J Biomol Struct Dyn; 2024; 42(21):11997-12010. PubMed ID: 37817503 [TBL] [Abstract][Full Text] [Related]
31. 3D QSAR, pharmacophore and molecular docking studies of known inhibitors and designing of novel inhibitors for M18 aspartyl aminopeptidase of Plasmodium falciparum. Kumari M; Chandra S; Tiwari N; Subbarao N BMC Struct Biol; 2016 Aug; 16():12. PubMed ID: 27534744 [TBL] [Abstract][Full Text] [Related]
32. In silico evaluation and in vitro growth inhibition of Plasmodium falciparum by natural amides and synthetic analogs. da Silva MA; Veloso MP; de Souza Reis K; de Matos Passarini G; Dos Santos APA; do Nascimento Martinez L; Fokoue HH; Kato MJ; Teles CBG; Kuehn CC Parasitol Res; 2020 Jun; 119(6):1879-1887. PubMed ID: 32382989 [TBL] [Abstract][Full Text] [Related]
33. Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. Kumar G; Parasuraman P; Sharma SK; Banerjee T; Karmodiya K; Surolia N; Surolia A J Med Chem; 2007 May; 50(11):2665-75. PubMed ID: 17477517 [TBL] [Abstract][Full Text] [Related]
34. Identification of novel Plasmodium falciparum PI4KB inhibitors as potential anti-malarial drugs: Homology modeling, molecular docking and molecular dynamics simulations. Ibrahim MAA; Abdelrahman AHM; Hassan AMA Comput Biol Chem; 2019 Jun; 80():79-89. PubMed ID: 30928871 [TBL] [Abstract][Full Text] [Related]
35. Analysis of Enoyl-Acyl Carrier Protein Reductase Structure and Interactions Yields an Efficient Virtual Screening Approach and Suggests a Potential Allosteric Site. Ghattas MA; Mansour RA; Atatreh N; Bryce RA Chem Biol Drug Des; 2016 Jan; 87(1):131-42. PubMed ID: 26259619 [TBL] [Abstract][Full Text] [Related]
36. Carfilzomib as a potential inhibitor of NADH-dependent enoyl-acyl carrier protein reductases of Mahfuz AMUB; Stambuk Opazo F; Aguilar LF; Iqbal MN J Biomol Struct Dyn; 2022 Jun; 40(9):4021-4037. PubMed ID: 33251968 [TBL] [Abstract][Full Text] [Related]
37. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. Perozzo R; Kuo M; Sidhu Ab; Valiyaveettil JT; Bittman R; Jacobs WR; Fidock DA; Sacchettini JC J Biol Chem; 2002 Apr; 277(15):13106-14. PubMed ID: 11792710 [TBL] [Abstract][Full Text] [Related]
38. Discovery of new potential hits of Plasmodium falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches. Neves BJ; Bueno RV; Braga RC; Andrade CH Bioorg Med Chem Lett; 2013 Apr; 23(8):2436-41. PubMed ID: 23499236 [TBL] [Abstract][Full Text] [Related]
39. Computational studies to identify the common type-I and type-II inhibitors against the CDK8 enzyme. Ghosh A; Manhas A; Jha PC J Cell Biochem; 2022 Mar; 123(3):628-643. PubMed ID: 34989009 [TBL] [Abstract][Full Text] [Related]
40. Design, synthesis, and biological and crystallographic evaluation of novel inhibitors of Plasmodium falciparum enoyl-ACP-reductase (PfFabI). Belluti F; Perozzo R; Lauciello L; Colizzi F; Kostrewa D; Bisi A; Gobbi S; Rampa A; Bolognesi ML; Recanatini M; Brun R; Scapozza L; Cavalli A J Med Chem; 2013 Oct; 56(19):7516-26. PubMed ID: 24063369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]