These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Capillary droplet propulsion on a fibre. Haefner S; Bäumchen O; Jacobs K Soft Matter; 2015 Sep; 11(35):6921-6. PubMed ID: 26120062 [TBL] [Abstract][Full Text] [Related]
4. Simulation investigation of the spontaneous motion behaviors of underwater oil droplets on a conical surface. Chen C; Liu J; Liu Y; Peng X Soft Matter; 2022 Dec; 18(48):9172-9180. PubMed ID: 36444757 [TBL] [Abstract][Full Text] [Related]
5. Gibbs free energy of liquid drops on conical fibers. Michielsen S; Zhang J; Du J; Lee HJ Langmuir; 2011 Oct; 27(19):11867-72. PubMed ID: 21863839 [TBL] [Abstract][Full Text] [Related]
6. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets. Castillo-Orozco E; Davanlou A; Choudhury PK; Kumar R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053022. PubMed ID: 26651794 [TBL] [Abstract][Full Text] [Related]
7. Droplet migration on conical fibers. Fournier C; Lee CL; Schulman RD; Raphaël É; Dalnoki-Veress K Eur Phys J E Soft Matter; 2021 Mar; 44(2):12. PubMed ID: 33683481 [TBL] [Abstract][Full Text] [Related]
8. Simulation Study on the Dynamic Behaviors of Water-in-Oil Emulsified Droplets on Coalescing Fibers. Chen C; Chen L; Weng D; Li X; Li Z; Wang J Langmuir; 2020 Dec; 36(48):14872-14880. PubMed ID: 33231080 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous Movement of a Droplet on a Conical Substrate: Theoretical Analysis of the Driving Force. Liu J; Feng Z; Ouyang W; Shui L; Liu Z ACS Omega; 2022 Jun; 7(24):20975-20982. PubMed ID: 35755370 [TBL] [Abstract][Full Text] [Related]
10. Water droplet dynamics on bioinspired conical surfaces. Schriner CT; Bhushan B Philos Trans A Math Phys Eng Sci; 2019 Jul; 377(2150):20190118. PubMed ID: 31177953 [TBL] [Abstract][Full Text] [Related]
11. Droplet Mobility on Hydrophobic Fibrous Coatings Comprising Orthogonal Fibers. Jamali M; Tafreshi HV; Pourdeyhimi B Langmuir; 2018 Oct; 34(41):12488-12499. PubMed ID: 30226775 [TBL] [Abstract][Full Text] [Related]
12. Role of the microridges on cactus spines. Guo L; Kumar S; Yang M; Tang G; Liu Z Nanoscale; 2022 Jan; 14(2):525-533. PubMed ID: 34919628 [TBL] [Abstract][Full Text] [Related]
13. High-Efficiency Interdigitated Electrode-Based Droplet Merger for Enabling Error-Free Droplet Microfluidic Systems. Han JJ; Zhang H; Li Y; Huang C; Guzman AR; Han A Anal Chem; 2024 Aug; 96(34):13906-15. PubMed ID: 39146475 [TBL] [Abstract][Full Text] [Related]
14. Droplet breakup mechanisms in premix membrane emulsification and related microfluidic channels. Nazir A; Vladisavljević GT Adv Colloid Interface Sci; 2021 Apr; 290():102393. PubMed ID: 33770649 [TBL] [Abstract][Full Text] [Related]
15. Wettability control of droplet durotaxis. Bueno J; Bazilevs Y; Juanes R; Gomez H Soft Matter; 2018 Feb; 14(8):1417-1426. PubMed ID: 29388999 [TBL] [Abstract][Full Text] [Related]
16. Fluoropolymer surface coatings to control droplets in microfluidic devices. Riche CT; Zhang C; Gupta M; Malmstadt N Lab Chip; 2014 Jun; 14(11):1834-41. PubMed ID: 24722827 [TBL] [Abstract][Full Text] [Related]
17. Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid. Hijano AJ; Loscertales IG; Ibáñez SE; Higuera FJ Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013011. PubMed ID: 25679712 [TBL] [Abstract][Full Text] [Related]