These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35043847)

  • 61. Seasonal variations in soil water in two woodland savannas of central Brazil with different fire history.
    Quesada CA; Hodnett MG; Breyer LM; Santos AJ; Andrade S; Miranda HS; Miranda AC; Lloyd J
    Tree Physiol; 2008 Mar; 28(3):405-15. PubMed ID: 18171664
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Emissions of nitrous oxide and nitric oxide from soils of native and exotic ecosystems of the Amazon and Cerrado regions of Brazil.
    Davidson EA; Bustamante MM; de Siqueira Pinto A
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():312-9. PubMed ID: 12805795
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Soil chemical factors and grassland species density in Emas National Park (central Brazil).
    Amorim P; Batalha M
    Braz J Biol; 2008 May; 68(2):279-85. PubMed ID: 18660955
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems.
    Rampelotto PH; de Siqueira Ferreira A; Barboza AD; Roesch LF
    Microb Ecol; 2013 Oct; 66(3):593-607. PubMed ID: 23624541
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ant diversity in Neotropical savannas: Hierarchical processes acting at multiple spatial scales.
    Maravalhas JB; Vasconcelos HL
    J Anim Ecol; 2020 Feb; 89(2):412-422. PubMed ID: 31556096
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The interactive effects of fire and diversity on short-term responses of ecosystem processes in experimental mediterranean grasslands.
    Dimitrakopoulos PG; Siamantziouras AS; Galanidis A; Mprezetou I; Troumbis AY
    Environ Manage; 2006 Jun; 37(6):826-39. PubMed ID: 16514480
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem.
    Porazinska DL; Farrer EC; Spasojevic MJ; Bueno de Mesquita CP; Sartwell SA; Smith JG; White CT; King AJ; Suding KN; Schmidt SK
    Ecology; 2018 Sep; 99(9):1942-1952. PubMed ID: 30024640
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plant phylodiversity enhances soil microbial productivity in facilitation-driven communities.
    Navarro-Cano JA; Goberna M; Valiente-Banuet A; Montesinos-Navarro A; García C; Verdú M
    Oecologia; 2014 Mar; 174(3):909-20. PubMed ID: 24233688
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bee communities (Hymenoptera: Anthophila) of the "Cerrado" ecosystem in São Paulo State, Brazil.
    Andena SR; Nascimento FS; Bispo PC; Mechi MR; Mateus S; Bego LR
    Genet Mol Res; 2009 Jul; 8(2):766-74. PubMed ID: 19681028
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Short-term community dynamics in seasonal and hyperseasonal cerrados.
    Cianciaruso MV; Batalha MA
    Braz J Biol; 2009 May; 69(2):231-40. PubMed ID: 19675923
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The drivers of woody species richness and density in a Neotropical savannah.
    Carvalho GH; Batalha MA
    Biol Lett; 2013; 9(6):20130412. PubMed ID: 24152692
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Insect folivory in Didymopanax vinosum (Apiaceae) in a vegetation mosaic of Brazilian cerrado.
    Varanda EM; Pais MP
    Braz J Biol; 2006 May; 66(2B):671-80. PubMed ID: 16906299
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields.
    de Castro AP; Quirino BF; Pappas G; Kurokawa AS; Neto EL; Krüger RH
    Arch Microbiol; 2008 Aug; 190(2):129-39. PubMed ID: 18458875
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Orchid bee (Hymenoptera: Apidae) community from a gallery forest in the Brazilian Cerrado.
    Silva FS
    Rev Biol Trop; 2012 Jun; 60(2):625-33. PubMed ID: 23894934
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem].
    Ma ZL; Zhao WQ; Liu M; Liu Q
    Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):1893-1900. PubMed ID: 31257761
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Linkage between plant species diversity and soil-based functions along a post-agricultural succession is influenced by the vegetative forms.
    Heydari M; Zeynali N; Omidipour R; Bazgir M; Kohzadian M; Prevosto B
    Environ Monit Assess; 2020 Jun; 192(7):429. PubMed ID: 32535793
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Below-ground herbivory mitigates biomass loss from above-ground herbivory of nitrogen fertilized plants.
    Borgström P; Bommarco R; Viketoft M; Strengbom J
    Sci Rep; 2020 Jul; 10(1):12752. PubMed ID: 32728034
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Impact of nitrogen additions on soil microbial respiration and temperature sensitivity in native and agricultural ecosystems in the Brazilian Cerrado.
    Espíndola SP; Bobuľská L; Ferreira AS
    J Therm Biol; 2018 Jul; 75():120-127. PubMed ID: 30017047
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Circumscribing campo rupestre - megadiverse Brazilian rocky montane savanas.
    Alves RJ; Silva NG; Oliveira JA; Medeiros D
    Braz J Biol; 2014 May; 74(2):355-62. PubMed ID: 25166320
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Land-use drives the temporal stability and magnitude of soil microbial functions and modulates climate effects.
    Kostin JE; Cesarz S; Lochner A; Schädler M; Macdonald CA; Eisenhauer N
    Ecol Appl; 2021 Jul; 31(5):e02325. PubMed ID: 33709490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.