These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 35043938)
1. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies. Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938 [TBL] [Abstract][Full Text] [Related]
2. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
3. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
4. Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia. Tang S; Buchman AS; De Jager PL; Bennett DA; Epstein MP; Yang J PLoS Genet; 2021 Apr; 17(4):e1009482. PubMed ID: 33798195 [TBL] [Abstract][Full Text] [Related]
5. DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in transcriptome-wide association studies. He R; Liu M; Lin Z; Zhuang Z; Shen X; Pan W Biostatistics; 2024 Apr; 25(2):468-485. PubMed ID: 36610078 [TBL] [Abstract][Full Text] [Related]
6. Some statistical consideration in transcriptome-wide association studies. Xue H; Pan W; Genet Epidemiol; 2020 Apr; 44(3):221-232. PubMed ID: 31821608 [TBL] [Abstract][Full Text] [Related]
7. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits. Knutson KA; Pan W Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104 [TBL] [Abstract][Full Text] [Related]
8. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007 [TBL] [Abstract][Full Text] [Related]
9. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Ghaffar A; ; Nyholt DR Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199 [TBL] [Abstract][Full Text] [Related]
10. Opportunities and challenges for transcriptome-wide association studies. Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968 [TBL] [Abstract][Full Text] [Related]
11. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes. Gao G; Fiorica PN; McClellan J; Barbeira AN; Li JL; Olopade OI; Im HK; Huo D Am J Hum Genet; 2023 Jun; 110(6):950-962. PubMed ID: 37164006 [TBL] [Abstract][Full Text] [Related]
12. Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits. Okamoto J; Wang L; Yin X; Luca F; Pique-Regi R; Helms A; Im HK; Morrison J; Wen X Am J Hum Genet; 2023 Jan; 110(1):44-57. PubMed ID: 36608684 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome-wide association analysis of brain structures yields insights into pleiotropy with complex neuropsychiatric traits. Zhao B; Shan Y; Yang Y; Yu Z; Li T; Wang X; Luo T; Zhu Z; Sullivan P; Zhao H; Li Y; Zhu H Nat Commun; 2021 May; 12(1):2878. PubMed ID: 34001886 [TBL] [Abstract][Full Text] [Related]
14. SUMMIT-FA: a new resource for improved transcriptome imputation using functional annotations. Melton HJ; Zhang Z; Wu C Hum Mol Genet; 2024 Mar; 33(7):624-635. PubMed ID: 38129112 [TBL] [Abstract][Full Text] [Related]
15. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
16. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits. Nagpal S; Meng X; Epstein MP; Tsoi LC; Patrick M; Gibson G; De Jager PL; Bennett DA; Wingo AP; Wingo TS; Yang J Am J Hum Genet; 2019 Aug; 105(2):258-266. PubMed ID: 31230719 [TBL] [Abstract][Full Text] [Related]
17. TWAS-GKF: a novel method for causal gene identification in transcriptome-wide association studies with knockoff inference. Wang A; Tian P; Zhang YD Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39189955 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome-wide association study in UK Biobank Europeans identifies associations with blood cell traits. Rowland B; Venkatesh S; Tardaguila M; Wen J; Rosen JD; Tapia AL; Sun Q; Graff M; Vuckovic D; Lettre G; Sankaran VG; Voloudakis G; Roussos P; Huffman JE; Reiner AP; Soranzo N; Raffield LM; Li Y Hum Mol Genet; 2022 Jul; 31(14):2333-2347. PubMed ID: 35138379 [TBL] [Abstract][Full Text] [Related]
19. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia. Wu C; Pan W Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426 [TBL] [Abstract][Full Text] [Related]
20. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]