BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35043939)

  • 1. Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm.
    Baruzzo G; Cesaro G; Di Camillo B
    Bioinformatics; 2022 Mar; 38(7):1920-1929. PubMed ID: 35043939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPARSim single cell: a count data simulator for scRNA-seq data.
    Baruzzo G; Patuzzi I; Di Camillo B
    Bioinformatics; 2020 Mar; 36(5):1468-1475. PubMed ID: 31598633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaeda computationally annotates doublets in single-cell RNA sequencing data.
    Schriever H; Kostka D
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A statistical simulator scDesign for rational scRNA-seq experimental design.
    Li WV; Li JJ
    Bioinformatics; 2019 Jul; 35(14):i41-i50. PubMed ID: 31510652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CStreet: a computed Cell State trajectory inference method for time-series single-cell RNA sequencing data.
    Zhao C; Xiu W; Hua Y; Zhang N; Zhang Y
    Bioinformatics; 2021 Nov; 37(21):3774-3780. PubMed ID: 34196686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling up single-cell RNA-seq data analysis with CellBridge workflow.
    Nouri N; Kurlovs AH; Gaglia G; de Rinaldis E; Savova V
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38113416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESICCC as a systematic computational framework for evaluation, selection, and integration of cell-cell communication inference methods.
    Luo J; Deng M; Zhang X; Sun X
    Genome Res; 2023 Oct; 33(10):1788-1805. PubMed ID: 37827697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCRIP: an accurate simulator for single-cell RNA sequencing data.
    Qin F; Luo X; Xiao F; Cai G
    Bioinformatics; 2022 Feb; 38(5):1304-1311. PubMed ID: 34874992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping and Validation of scRNA-Seq-Derived Cell-Cell Communication Networks in the Tumor Microenvironment.
    Bridges K; Miller-Jensen K
    Front Immunol; 2022; 13():885267. PubMed ID: 35572582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data.
    Jin S; MacLean AL; Peng T; Nie Q
    Bioinformatics; 2018 Jun; 34(12):2077-2086. PubMed ID: 29415263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic evaluation with practical guidelines for single-cell and spatially resolved transcriptomics data simulation under multiple scenarios.
    Duo H; Li Y; Lan Y; Tao J; Yang Q; Xiao Y; Sun J; Li L; Nie X; Zhang X; Liang G; Liu M; Hao Y; Li B
    Genome Biol; 2024 Jun; 25(1):145. PubMed ID: 38831386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge.
    Chen C; Leung YY; Ionita M; Wang LS; Li M
    Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.