These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 35044073)
1. Deep learning-based convolutional neural network for intramodality brain MRI synthesis. Osman AFI; Tamam NM J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073 [TBL] [Abstract][Full Text] [Related]
2. Contrast-enhanced MRI synthesis using dense-dilated residual convolutions based 3D network toward elimination of gadolinium in neuro-oncology. Osman AFI; Tamam NM J Appl Clin Med Phys; 2023 Dec; 24(12):e14120. PubMed ID: 37552487 [TBL] [Abstract][Full Text] [Related]
3. Comparison of deep learning synthesis of synthetic CTs using clinical MRI inputs. Massa HA; Johnson JM; McMillan AB Phys Med Biol; 2020 Dec; 65(23):23NT03. PubMed ID: 33120371 [TBL] [Abstract][Full Text] [Related]
4. Multimodal MRI synthesis using unified generative adversarial networks. Dai X; Lei Y; Fu Y; Curran WJ; Liu T; Mao H; Yang X Med Phys; 2020 Dec; 47(12):6343-6354. PubMed ID: 33053202 [TBL] [Abstract][Full Text] [Related]
5. Deformable registration of magnetic resonance images using unsupervised deep learning in neuro-/radiation oncology. Osman AFI; Al-Mugren KS; Tamam NM; Shahine B Radiat Oncol; 2024 May; 19(1):61. PubMed ID: 38773620 [TBL] [Abstract][Full Text] [Related]
6. High-resolution 3T to 7T ADC map synthesis with a hybrid CNN-transformer model. Eidex Z; Wang J; Safari M; Elder E; Wynne J; Wang T; Shu HK; Mao H; Yang X Med Phys; 2024 Jun; 51(6):4380-4388. PubMed ID: 38630982 [TBL] [Abstract][Full Text] [Related]
7. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
8. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model. Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284 [TBL] [Abstract][Full Text] [Related]
9. Virtual Contrast-Enhanced Magnetic Resonance Images Synthesis for Patients With Nasopharyngeal Carcinoma Using Multimodality-Guided Synergistic Neural Network. Li W; Xiao H; Li T; Ren G; Lam S; Teng X; Liu C; Zhang J; Kar-Ho Lee F; Au KH; Ho-Fun Lee V; Chang ATY; Cai J Int J Radiat Oncol Biol Phys; 2022 Mar; 112(4):1033-1044. PubMed ID: 34774997 [TBL] [Abstract][Full Text] [Related]
10. Handling Missing MRI Data in Brain Tumors Classification Tasks: Usage of Synthetic Images vs. Duplicate Images and Empty Images. Moshe YH; Buchsweiler Y; Teicher M; Artzi M J Magn Reson Imaging; 2024 Aug; 60(2):561-573. PubMed ID: 37864370 [TBL] [Abstract][Full Text] [Related]
11. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390 [TBL] [Abstract][Full Text] [Related]
12. Reconstruction of multicontrast MR images through deep learning. Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314 [TBL] [Abstract][Full Text] [Related]
13. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data. Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411 [TBL] [Abstract][Full Text] [Related]
14. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers. Kidoh M; Shinoda K; Kitajima M; Isogawa K; Nambu M; Uetani H; Morita K; Nakaura T; Tateishi M; Yamashita Y; Yamashita Y Magn Reson Med Sci; 2020 Aug; 19(3):195-206. PubMed ID: 31484849 [TBL] [Abstract][Full Text] [Related]
15. Automated glioma grading on conventional MRI images using deep convolutional neural networks. Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478 [TBL] [Abstract][Full Text] [Related]
16. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
17. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging. Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395 [TBL] [Abstract][Full Text] [Related]
18. MRI motion artifact reduction using a conditional diffusion probabilistic model (MAR-CDPM). Safari M; Yang X; Fatemi A; Archambault L Med Phys; 2024 Apr; 51(4):2598-2610. PubMed ID: 38009583 [TBL] [Abstract][Full Text] [Related]
19. Generalizable synthetic MRI with physics-informed convolutional networks. Jacobs L; Mandija S; Liu H; van den Berg CAT; Sbrizzi A; Maspero M Med Phys; 2024 May; 51(5):3348-3359. PubMed ID: 38063208 [TBL] [Abstract][Full Text] [Related]
20. Direct synthesis of multi-contrast brain MR images from MR multitasking spatial factors using deep learning. Qiu S; Ma S; Wang L; Chen Y; Fan Z; Moser FG; Maya M; Sati P; Sicotte NL; Christodoulou AG; Xie Y; Li D Magn Reson Med; 2023 Oct; 90(4):1672-1681. PubMed ID: 37246485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]