BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 35044230)

  • 1. Inhibition of Fatty Acid Translocase (FAT/CD36) Palmitoylation Enhances Hepatic Fatty Acid β-Oxidation by Increasing Its Localization to Mitochondria and Interaction with Long-Chain Acyl-CoA Synthetase 1.
    Zeng S; Wu F; Chen M; Li Y; You M; Zhang Y; Yang P; Wei L; Ruan XZ; Zhao L; Chen Y
    Antioxid Redox Signal; 2022 Jun; 36(16-18):1081-1100. PubMed ID: 35044230
    [No Abstract]   [Full Text] [Related]  

  • 2. CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis.
    Zhao L; Zhang C; Luo X; Wang P; Zhou W; Zhong S; Xie Y; Jiang Y; Yang P; Tang R; Pan Q; Hall AR; Luong TV; Fan J; Varghese Z; Moorhead JF; Pinzani M; Chen Y; Ruan XZ
    J Hepatol; 2018 Sep; 69(3):705-717. PubMed ID: 29705240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TANK-Binding Kinase 1 Regulates the Localization of Acyl-CoA Synthetase ACSL1 to Control Hepatic Fatty Acid Oxidation.
    Huh JY; Reilly SM; Abu-Odeh M; Murphy AN; Mahata SK; Zhang J; Cho Y; Seo JB; Hung CW; Green CR; Metallo CM; Saltiel AR
    Cell Metab; 2020 Dec; 32(6):1012-1027.e7. PubMed ID: 33152322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein mediated fatty acid uptake: synergy between CD36/FAT-facilitated transport and acyl-CoA synthetase-driven metabolism.
    Schneider H; Staudacher S; Poppelreuther M; Stremmel W; Ehehalt R; Füllekrug J
    Arch Biochem Biophys; 2014 Mar; 546():8-18. PubMed ID: 24503477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways.
    Young PA; Senkal CE; Suchanek AL; Grevengoed TJ; Lin DD; Zhao L; Crunk AE; Klett EL; Füllekrug J; Obeid LM; Coleman RA
    J Biol Chem; 2018 Oct; 293(43):16724-16740. PubMed ID: 30190326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of CD36 and acyl-CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells.
    Krammer J; Digel M; Ehehalt F; Stremmel W; Füllekrug J; Ehehalt R
    Int J Med Sci; 2011; 8(7):599-614. PubMed ID: 22022213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-chain acyl coenzyme A synthetase 1 overexpression in primary cultured Schwann cells prevents long chain fatty acid-induced oxidative stress and mitochondrial dysfunction.
    Hinder LM; Figueroa-Romero C; Pacut C; Hong Y; Vivekanandan-Giri A; Pennathur S; Feldman EL
    Antioxid Redox Signal; 2014 Aug; 21(4):588-600. PubMed ID: 23991914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation.
    Smith BK; Jain SS; Rimbaud S; Dam A; Quadrilatero J; Ventura-Clapier R; Bonen A; Holloway GP
    Biochem J; 2011 Jul; 437(1):125-34. PubMed ID: 21463259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P2Y2R Deficiency Ameliorates Hepatic Steatosis by Reducing Lipogenesis and Enhancing Fatty Acid β-Oxidation through AMPK and PGC-1α Induction in High-Fat Diet-Fed Mice.
    Dusabimana T; Park EJ; Je J; Jeong K; Yun SP; Kim HJ; Kim H; Park SW
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria.
    Campbell SE; Tandon NN; Woldegiorgis G; Luiken JJ; Glatz JF; Bonen A
    J Biol Chem; 2004 Aug; 279(35):36235-41. PubMed ID: 15161924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice.
    Goldenberg JR; Wang X; Lewandowski ED
    J Mol Cell Cardiol; 2016 May; 94():1-9. PubMed ID: 26995156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.
    McFarlan JT; Yoshida Y; Jain SS; Han XX; Snook LA; Lally J; Smith BK; Glatz JF; Luiken JJ; Sayer RA; Tupling AR; Chabowski A; Holloway GP; Bonen A
    J Biol Chem; 2012 Jul; 287(28):23502-16. PubMed ID: 22584574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition.
    Li LO; Ellis JM; Paich HA; Wang S; Gong N; Altshuller G; Thresher RJ; Koves TR; Watkins SM; Muoio DM; Cline GW; Shulman GI; Coleman RA
    J Biol Chem; 2009 Oct; 284(41):27816-27826. PubMed ID: 19648649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation.
    Park HS; Song JW; Park JH; Lim BK; Moon OS; Son HY; Lee JH; Gao B; Won YS; Kwon HJ
    Autophagy; 2021 Sep; 17(9):2549-2564. PubMed ID: 33190588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function.
    Zhao L; Pascual F; Bacudio L; Suchanek AL; Young PA; Li LO; Martin SA; Camporez JP; Perry RJ; Shulman GI; Klett EL; Coleman RA
    J Biol Chem; 2019 May; 294(22):8819-8833. PubMed ID: 30975900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise.
    Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rosiglitazone increases fatty acid oxidation and fatty acid translocase (FAT/CD36) but not carnitine palmitoyltransferase I in rat muscle mitochondria.
    Benton CR; Holloway GP; Campbell SE; Yoshida Y; Tandon NN; Glatz JF; Luiken JJ; Spriet LL; Bonen A
    J Physiol; 2008 Mar; 586(6):1755-66. PubMed ID: 18238811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Essential Role of the N-Terminal Region of ACSL1 in Linking Free Fatty Acids to Mitochondrial β-Oxidation in C2C12 Myotubes.
    Nan J; Lee JS; Lee SA; Lee DS; Park KS; Chung SS
    Mol Cells; 2021 Sep; 44(9):637-646. PubMed ID: 34511469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease.
    Kohjima M; Enjoji M; Higuchi N; Kato M; Kotoh K; Yoshimoto T; Fujino T; Yada M; Yada R; Harada N; Takayanagi R; Nakamuta M
    Int J Mol Med; 2007 Sep; 20(3):351-8. PubMed ID: 17671740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs Fatty Acid oxidation and induces cardiac hypertrophy.
    Ellis JM; Mentock SM; Depetrillo MA; Koves TR; Sen S; Watkins SM; Muoio DM; Cline GW; Taegtmeyer H; Shulman GI; Willis MS; Coleman RA
    Mol Cell Biol; 2011 Mar; 31(6):1252-62. PubMed ID: 21245374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.