BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35044525)

  • 1. A macroscopic approach for stress-driven anisotropic growth in bioengineered soft tissues.
    Lamm L; Holthusen H; Brepols T; Jockenhövel S; Reese S
    Biomech Model Mechanobiol; 2022 Apr; 21(2):627-645. PubMed ID: 35044525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volumetric growth of soft tissues evaluated in the current configuration.
    Zhuan X; Luo XY
    Biomech Model Mechanobiol; 2022 Apr; 21(2):569-588. PubMed ID: 35044527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microsphere-based remodelling formulation for anisotropic biological tissues.
    Menzel A; Waffenschmidt T
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3499-523. PubMed ID: 19657009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volumetric locking free 3D finite element for modelling of anisotropic visco-hyperelastic behaviour of anterior cruciate ligament.
    Bijalwan A; Patel BP; Marieswaran M; Kalyanasundaram D
    J Biomech; 2018 May; 73():1-8. PubMed ID: 29599040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards real-time finite-strain anisotropic thermo-visco-elastodynamic analysis of soft tissues for thermal ablative therapy.
    Zhang J; Lay RJ; Roberts SK; Chauhan S
    Comput Methods Programs Biomed; 2021 Jan; 198():105789. PubMed ID: 33069033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic hyperelastic behavior of soft biological tissues.
    Chen ZW; Joli P; Feng ZQ
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1436-44. PubMed ID: 25127194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling of anisotropic growth in biological tissues. A new approach and computational aspects.
    Menzel A
    Biomech Model Mechanobiol; 2005 Mar; 3(3):147-71. PubMed ID: 15778872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model.
    Baer AE; Laursen TA; Guilak F; Setton LA
    J Biomech Eng; 2003 Feb; 125(1):1-11. PubMed ID: 12661192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling anisotropic viscoelasticity for real-time soft tissue simulation.
    Taylor ZA; Comas O; Cheng M; Passenger J; Hawkes DJ; Atkinson D; Ourselin S
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):703-10. PubMed ID: 18979808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite strain parametric HFGMC micromechanics of soft tissues.
    Breiman U; Meshi I; Aboudi J; Haj-Ali R
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2443-2453. PubMed ID: 32519115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible.
    Kober C; Erdmann B; Hellmich C; Sader R; Zeilhofer HF
    Comput Methods Biomech Biomed Engin; 2006 Apr; 9(2):91-101. PubMed ID: 16880160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polyconvex anisotropic strain-energy function for soft collagenous tissues.
    Itskov M; Ehret AE; Mavrilas D
    Biomech Model Mechanobiol; 2006 Mar; 5(1):17-26. PubMed ID: 16362195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc.
    Castro APG; Alves JL
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):538-550. PubMed ID: 33111576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element implementation of a new model of slight compressibility for transversely isotropic materials.
    Pierrat B; Murphy JG; MacManus DB; Gilchrist MD
    Comput Methods Biomech Biomed Engin; 2016; 19(7):745-58. PubMed ID: 26252069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.