BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35044527)

  • 1. Volumetric growth of soft tissues evaluated in the current configuration.
    Zhuan X; Luo XY
    Biomech Model Mechanobiol; 2022 Apr; 21(2):569-588. PubMed ID: 35044527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress-dependent finite growth in soft elastic tissues.
    Rodriguez EK; Hoger A; McCulloch AD
    J Biomech; 1994 Apr; 27(4):455-67. PubMed ID: 8188726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle.
    Kroon W; Delhaas T; Arts T; Bovendeerd P
    Biomech Model Mechanobiol; 2009 Aug; 8(4):301-9. PubMed ID: 18758835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A macroscopic approach for stress-driven anisotropic growth in bioengineered soft tissues.
    Lamm L; Holthusen H; Brepols T; Jockenhövel S; Reese S
    Biomech Model Mechanobiol; 2022 Apr; 21(2):627-645. PubMed ID: 35044525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modified Holzapfel-Ogden law for a residually stressed finite strain model of the human left ventricle in diastole.
    Wang HM; Luo XY; Gao H; Ogden RW; Griffith BE; Berry C; Wang TJ
    Biomech Model Mechanobiol; 2014 Jan; 13(1):99-113. PubMed ID: 23609894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth.
    Armstrong MH; Buganza Tepole A; Kuhl E; Simon BR; Vande Geest JP
    PLoS One; 2016; 11(4):e0152806. PubMed ID: 27078495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory.
    Mousavi SJ; Avril S
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1765-1777. PubMed ID: 28536892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling of residually stressed materials with application to AAA.
    Ahamed T; Dorfmann L; Ogden RW
    J Mech Behav Biomed Mater; 2016 Aug; 61():221-234. PubMed ID: 26874252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical Modelling of Residual-Stress Based Volumetric Growth in Soft Matter.
    Huang R; Ogden RW; Penta R
    J Elast; 2021; 145(1-2):223-241. PubMed ID: 34720362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the existence of elastic minimizers for initially stressed materials.
    Riccobelli D; Agosti A; Ciarletta P
    Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180074. PubMed ID: 30879420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual Stress Estimates from Multi-cut Opening Angles of the Left Ventricle.
    Zhuan X; Luo X
    Cardiovasc Eng Technol; 2020 Aug; 11(4):381-393. PubMed ID: 32557186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient.
    Weickenmeier J; Jabareen M
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1238-62. PubMed ID: 24817477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Geometry of Incompatibility in Growing Soft Tissues: Theory and Numerical Characterization.
    Lee T; Holland MA; Weickenmeier J; Gosain AK; Tepole AB
    J Mech Phys Solids; 2021 Jan; 146():. PubMed ID: 34054143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volumetric locking free 3D finite element for modelling of anisotropic visco-hyperelastic behaviour of anterior cruciate ligament.
    Bijalwan A; Patel BP; Marieswaran M; Kalyanasundaram D
    J Biomech; 2018 May; 73():1-8. PubMed ID: 29599040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model that predicts reverse growth in response to mechanical unloading.
    Lee LC; Genet M; Acevedo-Bolton G; Ordovas K; Guccione JM; Kuhl E
    Biomech Model Mechanobiol; 2015 Apr; 14(2):217-29. PubMed ID: 24888270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element approach for gastrointestinal tissue mechanics.
    Panda SK; Buist ML
    Int J Numer Method Biomed Eng; 2019 Dec; 35(12):e3269. PubMed ID: 31663684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the effects of residual stress in microindentation tests of soft tissue structures.
    Zamir EA; Taber LA
    J Biomech Eng; 2004 Apr; 126(2):276-83. PubMed ID: 15179859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphogenesis of growing soft tissues.
    Dervaux J; Ben Amar M
    Phys Rev Lett; 2008 Aug; 101(6):068101. PubMed ID: 18764507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model.
    Weichert F; Schröder A; Landes C; Shamaa A; Awad SK; Walczak L; Müller H; Wagner M
    Med Biol Eng Comput; 2010 Jun; 48(6):597-610. PubMed ID: 20411435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.