BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35044527)

  • 21. Modelling adaptative volumetric finite growth in patient-specific residually stressed arteries.
    Alastrué V; Martínez MA; Doblaré M
    J Biomech; 2008; 41(8):1773-81. PubMed ID: 18433759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is there any objective and independent characterization and modeling of soft biological tissues?
    Morch A; Astruc L; Mayeur O; Witz JF; Lecomte-Grosbras P; Brieu M
    J Mech Behav Biomed Mater; 2020 Oct; 110():103915. PubMed ID: 32771881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A relaxed growth modeling framework for controlling growth-induced residual stresses.
    Genet M
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():270-277. PubMed ID: 31831206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Inverse Finite Element u/p-Formulation to Predict the Unloaded State of In Vivo Biological Soft Tissues.
    Vavourakis V; Hipwell JH; Hawkes DJ
    Ann Biomed Eng; 2016 Jan; 44(1):187-201. PubMed ID: 26219402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting.
    Portnoy S; Yarnitzky G; Yizhar Z; Kristal A; Oppenheim U; Siev-Ner I; Gefen A
    Ann Biomed Eng; 2007 Jan; 35(1):120-35. PubMed ID: 17120139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation of balloon angioplasty in residually stressed blood vessels-Application of a gradient-enhanced fibre damage model.
    Polindara C; Waffenschmidt T; Menzel A
    J Biomech; 2016 Aug; 49(12):2341-8. PubMed ID: 26924658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A morphoelastic model for dermal wound closure.
    Bowden LG; Byrne HM; Maini PK; Moulton DE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):663-81. PubMed ID: 26264498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational model of damage-induced growth in soft biological tissues considering the mechanobiology of healing.
    Gierig M; Wriggers P; Marino M
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1297-1315. PubMed ID: 33768359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A general framework for application of prestrain to computational models of biological materials.
    Maas SA; Erdemir A; Halloran JP; Weiss JA
    J Mech Behav Biomed Mater; 2016 Aug; 61():499-510. PubMed ID: 27131609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Equivalence between short-time biphasic and incompressible elastic material responses.
    Ateshian GA; Ellis BJ; Weiss JA
    J Biomech Eng; 2007 Jun; 129(3):405-12. PubMed ID: 17536908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element modeling of soft tissues: material models, tissue interaction and challenges.
    Freutel M; Schmidt H; Dürselen L; Ignatius A; Galbusera F
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):363-72. PubMed ID: 24529470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.
    Zhu Y; Kang G; Yu C; Poh LH
    J Mech Behav Biomed Mater; 2016 Aug; 61():397-409. PubMed ID: 27108349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element implementation of a new model of slight compressibility for transversely isotropic materials.
    Pierrat B; Murphy JG; MacManus DB; Gilchrist MD
    Comput Methods Biomech Biomed Engin; 2016; 19(7):745-58. PubMed ID: 26252069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multigenerational interstitial growth of biological tissues.
    Ateshian GA; Ricken T
    Biomech Model Mechanobiol; 2010 Dec; 9(6):689-702. PubMed ID: 20238138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hyperelastic model to capture the mechanical behaviour and histological aspects of the soft tissues.
    Dwivedi KK; Lakhani P; Kumar S; Kumar N
    J Mech Behav Biomed Mater; 2022 Feb; 126():105013. PubMed ID: 34920323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues.
    Zhu Y; Kang G; Kan Q; Yu C
    J Biomech; 2014 Mar; 47(5):996-1003. PubMed ID: 24462380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the correlation between continuum mechanics entities and cell activity in biological soft tissues: assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues.
    Kroon M
    J Theor Biol; 2010 May; 264(1):66-76. PubMed ID: 20045702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.