BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35044642)

  • 1. Photodynamic Inactivation of plant pathogens part II: fungi.
    Hamminger C; Glueck M; Fefer M; Ckurshumova W; Liu J; Tenhaken R; Plaetzer K
    Photochem Photobiol Sci; 2022 Feb; 21(2):195-207. PubMed ID: 35044642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamic Inactivation in agriculture: combating fungal phytopathogens resistant to conventional treatment.
    Jernej L; Frost DSM; Walker AS; Liu J; Fefer M; Plaetzer K
    Photochem Photobiol Sci; 2024 Jun; 23(6):1117-1128. PubMed ID: 38750328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Save the crop: Photodynamic Inactivation of plant pathogens I: bacteria.
    Glueck M; Hamminger C; Fefer M; Liu J; Plaetzer K
    Photochem Photobiol Sci; 2019 Jul; 18(7):1700-1708. PubMed ID: 31214675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fly into the light: eliminating Drosophila melanogaster with chlorophyllin-based Photodynamic Inactivation.
    Fellner A; Bresgen N; Fefer M; Liu J; Plaetzer K
    Photochem Photobiol Sci; 2024 Jun; 23(6):1155-1166. PubMed ID: 38739325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking the Rebellion: Photodynamic Inactivation against
    Wimmer A; Glueck M; Ckurshumova W; Liu J; Fefer M; Plaetzer K
    Antibiotics (Basel); 2022 Apr; 11(5):. PubMed ID: 35625188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In the Right Light: Photodynamic Inactivation of Microorganisms Using a LED-Based Illumination Device Tailored for the Antimicrobial Application.
    Hasenleitner M; Plaetzer K
    Antibiotics (Basel); 2019 Dec; 9(1):. PubMed ID: 31906034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosensitizer to the rescue: in planta and field application of photodynamic inactivation against plant pathogenic bacteria.
    Islam MT; Ng K; Fefer M; Liu J; Uddin W; Ckurshumova W; Rosa C
    Plant Dis; 2022 Aug; ():. PubMed ID: 36040229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Inactivation by Curcumin-Mediated Photosensitization of
    Huang L; Yong KWL; Fernando WC; Carpinelli de Jesus M; De Voss JJ; Sultanbawa Y; Fletcher MT
    Toxins (Basel); 2021 Mar; 13(3):. PubMed ID: 33803254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria.
    Hamblin MR; O'Donnell DA; Murthy N; Rajagopalan K; Michaud N; Sherwood ME; Hasan T
    J Antimicrob Chemother; 2002 Jun; 49(6):941-51. PubMed ID: 12039886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal efficacy of photodynamic therapy with TONS 504 for pathogenic filamentous fungi.
    Sueoka K; Chikama T; Pertiwi YD; Ko JA; Kiuchi Y; Sakaguchi T; Obana A
    Lasers Med Sci; 2019 Jun; 34(4):743-747. PubMed ID: 30284654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Back to the roots: photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer.
    Winter S; Tortik N; Kubin A; Krammer B; Plaetzer K
    Photochem Photobiol Sci; 2013 Oct; 12(10):1795-802. PubMed ID: 23828307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of
    Dėnė L; Valiuškaitė A
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of osthol-based botanical fungicides and their antifungal application in crop protection.
    Guo Y; Chen J; Ren D; Du B; Wu L; Zhang Y; Wang Z; Qian S
    Bioorg Med Chem; 2021 Jun; 40():116184. PubMed ID: 33971489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective photosensitization-based inactivation of Gram (-) food pathogens and molds using the chlorophyllin-chitosan complex: towards photoactive edible coatings to preserve strawberries.
    Buchovec I; Lukseviciute V; Marsalka A; Reklaitis I; Luksiene Z
    Photochem Photobiol Sci; 2016 Apr; 15(4):506-16. PubMed ID: 26947225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using essential oils to control diseases in strawberries and peaches.
    Fontana DC; Neto DD; Pretto MM; Mariotto AB; Caron BO; Kulczynski SM; Schmidt D
    Int J Food Microbiol; 2021 Jan; 338():108980. PubMed ID: 33243629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial conversion and in vitro and in vivo antifungal assessment of bioconverted docosahexaenoic acid (bDHA) used against agricultural plant pathogenic fungi.
    Bajpai VK; Kim HR; Hou CT; Kang SC
    J Ind Microbiol Biotechnol; 2009 May; 36(5):695-704. PubMed ID: 19259715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of bis(ylidene) cyclohexanones and their antifungal activity against selected plant pathogenic fungi.
    da Silva UP; Ferreira BW; de Sousa BL; Barreto RW; Martins FT; de A Neto JH; Vaz BG; da Silva RR; Martins TVF; de Oliveira Mendes TA; Varejão EVV
    Mol Divers; 2023 Feb; 27(1):281-297. PubMed ID: 35441971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological aspects and the effectiveness of photodynamic inactivation against Rhizopus oryzae in different life cycles.
    Marques MJAM; Alves F; Sousa MHS; Guimarães FEG; Kurachi C
    Photochem Photobiol Sci; 2024 Jul; 23(7):1323-1339. PubMed ID: 38806860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.