These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35044721)

  • 1. Recent Advances on Tuning the Interlayer Coupling and Properties in van der Waals Heterostructures.
    Wu X; Chen X; Yang R; Zhan J; Ren Y; Li K
    Small; 2022 Apr; 18(15):e2105877. PubMed ID: 35044721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Interlayer Exciton in WS
    Ma X; Fu S; Ding J; Liu M; Bian A; Hong F; Sun J; Zhang X; Yu X; He D
    Nano Lett; 2021 Oct; 21(19):8035-8042. PubMed ID: 34605657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices.
    Zhao K; He D; Fu S; Bai Z; Miao Q; Huang M; Wang Y; Zhang X
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Healing Originated van der Waals Homojunctions with Strong Interlayer Coupling for High-Performance Photodiodes.
    Zhang X; Liao Q; Kang Z; Liu B; Ou Y; Du J; Xiao J; Gao L; Shan H; Luo Y; Fang Z; Wang P; Sun Z; Zhang Z; Zhang Y
    ACS Nano; 2019 Mar; 13(3):3280-3291. PubMed ID: 30803226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach.
    Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Criteria for Assessing the Interlayer Coupling of van der Waals Heterostructures Using Ultrafast Pump-Probe Photoluminescence Spectroscopy.
    Han S; Liang X; Qin C; Gao Y; Song Y; Wang S; Su X; Zhang G; Chen R; Hu J; Jing M; Xiao L; Jia S
    ACS Nano; 2021 Aug; 15(8):12966-12974. PubMed ID: 34314151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning and exploiting interlayer coupling in two-dimensional van der Waals heterostructures.
    Jiao C; Pei S; Wu S; Wang Z; Xia J
    Rep Prog Phys; 2023 Oct; 86(11):. PubMed ID: 37774692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Two-Dimensional C
    Zhang C; Jiao Y; He T; Bottle S; Frauenheim T; Du A
    J Phys Chem Lett; 2018 Feb; 9(4):858-862. PubMed ID: 29406724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically Active MXenes in Van der Waals Heterostructures.
    Purbayanto MAK; Chandel M; Birowska M; Rosenkranz A; Jastrzębska AM
    Adv Mater; 2023 Oct; 35(42):e2301850. PubMed ID: 37715336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biaxial strain, electric field and interlayer distance-tailored electronic structure and magnetic properties of two-dimensional g-C
    Gao Y; Zhou B; Wang X
    Phys Chem Chem Phys; 2021 Mar; 23(10):6171-6181. PubMed ID: 33687408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlayer Coupling and Ultrafast Hot Electron Transfer Dynamics in Metallic VSe
    Park TG; Choi BK; Park J; Kim J; Chang YJ; Rotermund F
    ACS Nano; 2021 Apr; 15(4):7756-7764. PubMed ID: 33761743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures.
    Zhang K; Zhang T; Cheng G; Li T; Wang S; Wei W; Zhou X; Yu W; Sun Y; Wang P; Zhang D; Zeng C; Wang X; Hu W; Fan HJ; Shen G; Chen X; Duan X; Chang K; Dai N
    ACS Nano; 2016 Mar; 10(3):3852-8. PubMed ID: 26950255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlayer Coupling and Gate-Tunable Excitons in Transition Metal Dichalcogenide Heterostructures.
    Gao S; Yang L; Spataru CD
    Nano Lett; 2017 Dec; 17(12):7809-7813. PubMed ID: 29164895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interlayer Coupling in Anisotropic/Isotropic Van der Waals Heterostructures of ReS
    You B; Xu Z; Yang J; Jiang X; Li Y; Shao G; Jin Y; Xiang H; Jiang H; Liu X; Sun J; Feng Y; Jiang Y; Pan A; Liu S
    Small; 2024 Jan; 20(3):e2304010. PubMed ID: 37726234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct formation of interlayer exciton in two-dimensional van der Waals heterostructures.
    Niu X; Xiao S; Sun D; Shi A; Zhou Z; Chen W; Li X; Wang J
    Mater Horiz; 2021 Aug; 8(8):2208-2215. PubMed ID: 34846425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlayer Interactions in 1D Van der Waals Moiré Superlattices.
    Zhao S; Kitaura R; Moon P; Koshino M; Wang F
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103460. PubMed ID: 34841726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.
    Lee JY; Shin JH; Lee GH; Lee CH
    Nanomaterials (Basel); 2016 Oct; 6(11):. PubMed ID: 28335321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, electronic and thermoelectric properties of GeC and MXO (M = Ti, Zr and X = S, Se) monolayers and their van der Waals heterostructures.
    Bashir K; Bilal M; Amin B; Chen Y; Idrees M
    RSC Adv; 2023 Mar; 13(14):9624-9635. PubMed ID: 36968037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonvolatile magnetoelectric coupling in two-dimensional ferromagnetic-bilayer/ferroelectric van der Waals heterostructures.
    Wang W; Sun W; Li H; Bai Y; Ren F; You C; Cheng Z
    Nanoscale; 2021 Sep; 13(33):14214-14220. PubMed ID: 34477703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of van der Waals Interlayer Coupling through Polar Janus MoSSe.
    Zhang K; Guo Y; Ji Q; Lu AY; Su C; Wang H; Puretzky AA; Geohegan DB; Qian X; Fang S; Kaxiras E; Kong J; Huang S
    J Am Chem Soc; 2020 Oct; 142(41):17499-17507. PubMed ID: 32942848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.