These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 35044747)
1. Utility of Diffusive Gradient in Thin-Film Passive Samplers for Predicting Mercury Methylation Potential and Bioaccumulation in Freshwater Wetlands. Neal-Walthall N; Ndu U; Rivera NA; Elias DA; Hsu-Kim H Environ Sci Technol; 2022 Feb; 56(3):1743-1752. PubMed ID: 35044747 [TBL] [Abstract][Full Text] [Related]
2. Distribution and Homogenization of Multiple Mercury Species Inputs to Freshwater Wetland Mesocosms. Wadle A; Neal-Walthall N; Ndu U; Hsu-Kim H Environ Sci Technol; 2024 Jan; 58(3):1709-1720. PubMed ID: 38181227 [TBL] [Abstract][Full Text] [Related]
3. Quantification of Mercury Bioavailability for Methylation Using Diffusive Gradient in Thin-Film Samplers. Ndu U; Christensen GA; Rivera NA; Gionfriddo CM; Deshusses MA; Elias DA; Hsu-Kim H Environ Sci Technol; 2018 Aug; 52(15):8521-8529. PubMed ID: 29920204 [TBL] [Abstract][Full Text] [Related]
4. Preliminary investigation of polymer-based in situ passive samplers for mercury and methylmercury. Taylor VF; Buckman KL; Burgess RM Chemosphere; 2019 Nov; 234():806-814. PubMed ID: 31247490 [TBL] [Abstract][Full Text] [Related]
5. To what extent can the biogeochemical cycling of mercury modulate the measurement of dissolved mercury in surface freshwaters by passive sampling? Bretier M; Dabrin A; Billon G; Mathon B; Miège C; Coquery M Chemosphere; 2020 Jun; 248():126006. PubMed ID: 32000038 [TBL] [Abstract][Full Text] [Related]
6. Assessment of mercury bioavailability to benthic macroinvertebrates using diffusive gradients in thin films (DGT). Amirbahman A; Massey DI; Lotufo G; Steenhaut N; Brown LE; Biedenbach JM; Magar VS Environ Sci Process Impacts; 2013 Oct; 15(11):2104-14. PubMed ID: 24084872 [TBL] [Abstract][Full Text] [Related]
7. Mercury methylation in stormwater retention ponds at different stages in the management lifecycle. Strickman RJ; Mitchell CPJ Environ Sci Process Impacts; 2018 Apr; 20(4):595-606. PubMed ID: 29376168 [TBL] [Abstract][Full Text] [Related]
8. Mercury methylation potential and bioavailability in the sediments of two distinct aquatic systems. Qin C; Xu X Environ Pollut; 2023 May; 325():121373. PubMed ID: 36863435 [TBL] [Abstract][Full Text] [Related]
9. Internal dynamics of inorganic and methylmercury in a marine fish: Insights from mercury stable isotopes. Lee BJ; Kwon SY; Yin R; Li M; Jung S; Lim SH; Lee JH; Kim KW; Kim KD; Jang JW Environ Pollut; 2020 Dec; 267():115588. PubMed ID: 33254601 [TBL] [Abstract][Full Text] [Related]
10. The effects of aquaculture on mercury distribution, changing speciation, and bioaccumulation in a reservoir ecosystem. Liang P; Feng X; You Q; Gao X; Xu J; Wong M; Christie P; Wu SC Environ Sci Pollut Res Int; 2017 Nov; 24(33):25923-25932. PubMed ID: 28940142 [TBL] [Abstract][Full Text] [Related]
11. Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton. Klaus JE; Hammerschmidt CR; Costello DM; Burton GA Environ Toxicol Chem; 2016 Jul; 35(7):1759-65. PubMed ID: 26636557 [TBL] [Abstract][Full Text] [Related]
12. Mercury speciation in various aquatic systems using passive sampling technique of diffusive gradients in thin-film. Bratkič A; Klun K; Gao Y Sci Total Environ; 2019 May; 663():297-306. PubMed ID: 30711596 [TBL] [Abstract][Full Text] [Related]
13. Declines of methylmercury along a salinity gradient in a low-lying coastal wetland ecosystem at South Carolina, USA. Ulus Y; Tsui MT; Sakar A; Nyarko P; Aitmbarek NB; Ardón M; Chow AT Chemosphere; 2022 Dec; 308(Pt 2):136310. PubMed ID: 36088973 [TBL] [Abstract][Full Text] [Related]
14. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation. Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404 [TBL] [Abstract][Full Text] [Related]
15. Mercury Methylation Potentials in Sediments of an Ancient Cypress Wetland Using Species-Specific Isotope Dilution GC-ICP-MS. Bussan DD; Douvris C; Cizdziel JV Molecules; 2022 Aug; 27(15):. PubMed ID: 35956861 [TBL] [Abstract][Full Text] [Related]
16. Isotopic Fractionation and Source Appointment of Methylmercury and Inorganic Mercury in a Paddy Ecosystem. Qin C; Du B; Yin R; Meng B; Fu X; Li P; Zhang L; Feng X Environ Sci Technol; 2020 Nov; 54(22):14334-14342. PubMed ID: 33112617 [TBL] [Abstract][Full Text] [Related]
17. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808 [TBL] [Abstract][Full Text] [Related]
18. Methylmercury cycling in High Arctic wetland ponds: controls on sedimentary production. Lehnherr I; St Louis VL; Kirk JL Environ Sci Technol; 2012 Oct; 46(19):10523-31. PubMed ID: 22799567 [TBL] [Abstract][Full Text] [Related]
19. Wetland Management Strategy to Reduce Mercury in Water and Bioaccumulation in Fish. Ackerman JT; Fleck JA; Eagles-Smith CA; Marvin-DiPasquale M; Windham-Myers L; Herzog MP; McQuillen HL Environ Toxicol Chem; 2019 Oct; 38(10):2178-2196. PubMed ID: 31343757 [TBL] [Abstract][Full Text] [Related]
20. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Lei P; Zhong H; Duan D; Pan K Sci Total Environ; 2019 Aug; 680():140-150. PubMed ID: 31112813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]