BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35044755)

  • 1. Introducing an Artificial Deazaflavin Cofactor in
    Lee M; Drenth J; Trajkovic M; de Jong RM; Fraaije MW
    ACS Synth Biol; 2022 Feb; 11(2):938-952. PubMed ID: 35044755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equipping
    Lee M; Fraaije MW
    ACS Synth Biol; 2024 Mar; 13(3):921-929. PubMed ID: 38346396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved production of the non-native cofactor F
    Shah MV; Nazem-Bokaee H; Antoney J; Kang SW; Jackson CJ; Scott C
    Sci Rep; 2021 Nov; 11(1):21774. PubMed ID: 34741069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-yield production of coenzyme F
    Last D; Hasan M; Rothenburger L; Braga D; Lackner G
    Metab Eng; 2022 Sep; 73():158-167. PubMed ID: 35863619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae.
    King ZA; Feist AM
    Metab Eng; 2014 Jul; 24():117-28. PubMed ID: 24831709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Tailor-Made Deazaflavin-Mediated Recycling System for Artificial Nicotinamide Cofactor Biomimetics.
    Drenth J; Yang G; Paul CE; Fraaije MW
    ACS Catal; 2021 Sep; 11(18):11561-11569. PubMed ID: 34557329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and characterization of an F
    Nguyen QT; Trinco G; Binda C; Mattevi A; Fraaije MW
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2831-2842. PubMed ID: 27966048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
    Navale GR; Dharne MS; Shinde SS
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):457-475. PubMed ID: 33394155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae.
    Boghigian BA; Lee K; Pfeifer BA
    J Theor Biol; 2010 Jan; 262(2):197-207. PubMed ID: 19833139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convenient synthesis of deazaflavin cofactor FO and its activity in F(420)-dependent NADP reductase.
    Hossain MS; Le CQ; Joseph E; Nguyen TQ; Johnson-Winters K; Foss FW
    Org Biomol Chem; 2015 May; 13(18):5082-5. PubMed ID: 25827330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.
    Greening C; Ahmed FH; Mohamed AE; Lee BM; Pandey G; Warden AC; Scott C; Oakeshott JG; Taylor MC; Jackson CJ
    Microbiol Mol Biol Rev; 2016 Jun; 80(2):451-93. PubMed ID: 27122598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous Catalysis of the Final Steps of Tetracycline Biosynthesis by
    Herbst E; Lee A; Tang Y; Snyder SA; Cornish VW
    ACS Chem Biol; 2021 Aug; 16(8):1425-1434. PubMed ID: 34269557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides.
    Wang H; Yang Y; Lin L; Zhou W; Liu M; Cheng K; Wang W
    Microb Cell Fact; 2016 Aug; 15(1):134. PubMed ID: 27491546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH.
    Mädje K; Schmölzer K; Nidetzky B; Kratzer R
    Microb Cell Fact; 2012 Jan; 11():7. PubMed ID: 22236335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coupled in vitro/in vivo approach for engineering a heterologous type III PKS to enhance polyketide biosynthesis in Saccharomyces cerevisiae.
    Vickery CR; Cardenas J; Bowman ME; Burkart MD; Da Silva NA; Noel JP
    Biotechnol Bioeng; 2018 Jun; 115(6):1394-1402. PubMed ID: 29457628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae.
    Wiedemann B; Boles E
    Appl Environ Microbiol; 2008 Apr; 74(7):2043-50. PubMed ID: 18263741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.