These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 35044761)
1. Multiple Proton-Coupled Electron Transfers at a Tricopper Cluster: Modeling the Reductive Regeneration Process in Multicopper Oxidases. Zhang W; Moore CE; Zhang S J Am Chem Soc; 2022 Feb; 144(4):1709-1717. PubMed ID: 35044761 [TBL] [Abstract][Full Text] [Related]
2. Encapsulation of tricopper cluster in a synthetic cryptand enables facile redox processes from Cu Zhang W; Moore CE; Zhang S Chem Sci; 2020 Dec; 12(8):2986-2992. PubMed ID: 34164067 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamics of Proton-Coupled Electron Transfer at Tricopper μ-Oxo/Hydroxo/Aqua Complexes. Mondal S; Zhang W; Zhang S J Am Chem Soc; 2024 Jun; 146(22):15036-15044. PubMed ID: 38770819 [TBL] [Abstract][Full Text] [Related]
4. Variable-temperature, variable-field magnetic circular dichroism studies of tris-hydroxy- and mu3-oxo-bridged trinuclear Cu(II) complexes: evaluation of proposed structures of the native intermediate of the multicopper oxidases. Yoon J; Mirica LM; Stack TD; Solomon EI J Am Chem Soc; 2005 Oct; 127(39):13680-93. PubMed ID: 16190734 [TBL] [Abstract][Full Text] [Related]
5. Molecular origin of rapid versus slow intramolecular electron transfer in the catalytic cycle of the multicopper oxidases. Heppner DE; Kjaergaard CH; Solomon EI J Am Chem Soc; 2013 Aug; 135(33):12212-5. PubMed ID: 23902255 [TBL] [Abstract][Full Text] [Related]
6. Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond. Yoon J; Solomon EI J Am Chem Soc; 2007 Oct; 129(43):13127-36. PubMed ID: 17918839 [TBL] [Abstract][Full Text] [Related]
7. The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Yoon J; Liboiron BD; Sarangi R; Hodgson KO; Hedman B; Solomon EI Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13609-14. PubMed ID: 17702865 [TBL] [Abstract][Full Text] [Related]
8. Unraveling Multicopper [Cu Sk S; Bandyopadhyay S; Sarkar C; Das I; Gupta A; Sadangi M; Mondal S; Banerjee M; Vijaykumar G; Behera JN; Konar S; Mandal S; Bera M ACS Appl Bio Mater; 2024 Apr; 7(4):2423-2449. PubMed ID: 38478915 [TBL] [Abstract][Full Text] [Related]
9. Covalent linkage of the type-2 and type-3 structural mimics to model the active site structure of multicopper oxidases: synthesis and magneto- structural properties of two angular trinuclear copper(II) complexes. Mukherjee A; Rudra I; Naik SG; Ramasesha S; Nethaji M; Chakravarty AR Inorg Chem; 2003 Sep; 42(18):5660-8. PubMed ID: 12950215 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of poly[[(μ Domasevitch KV; Lysenko AB Acta Crystallogr E Crystallogr Commun; 2019 Aug; 75(Pt 8):1185-1189. PubMed ID: 31417789 [TBL] [Abstract][Full Text] [Related]
12. O Sekretaryova A; Jones SM; Solomon EI J Am Chem Soc; 2019 Jul; 141(28):11304-11314. PubMed ID: 31260290 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, Structural Characterization, and Gas-Phase Unimolecular Reactivity of Bis(diphenylphosphino)amino Copper Hydride Nanoclusters [Cu Li J; White JM; Mulder RJ; Reid GE; Donnelly PS; O'Hair RA Inorg Chem; 2016 Oct; 55(19):9858-9868. PubMed ID: 27642661 [TBL] [Abstract][Full Text] [Related]
14. Geometric and Electronic Structure Contributions to O-O Cleavage and the Resultant Intermediate Generated in Heme-Copper Oxidases. Schaefer AW; Roveda AC; Jose A; Solomon EI J Am Chem Soc; 2019 Jun; 141(25):10068-10081. PubMed ID: 31146528 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of the reduction of the native intermediate in the multicopper oxidases: insights into rapid intramolecular electron transfer in turnover. Heppner DE; Kjaergaard CH; Solomon EI J Am Chem Soc; 2014 Dec; 136(51):17788-801. PubMed ID: 25490729 [TBL] [Abstract][Full Text] [Related]
16. Antisymmetric exchange in triangular tricopper(II) complexes: correlation among structural, magnetic, and electron paramagnetic resonance parameters. Ferrer S; Lloret F; Pardo E; Clemente-Juan JM; Liu-González M; García-Granda S Inorg Chem; 2012 Jan; 51(2):985-1001. PubMed ID: 22220521 [TBL] [Abstract][Full Text] [Related]
17. Modeling biological copper clusters: synthesis of a tricopper complex, and its chloride- and sulfide-bridged congeners. Di Francesco GN; Gaillard A; Ghiviriga I; Abboud KA; Murray LJ Inorg Chem; 2014 May; 53(9):4647-54. PubMed ID: 24745804 [TBL] [Abstract][Full Text] [Related]
18. Generation of bis(dithiolene)dioxomolybdenum(VI) complexes from bis(dithiolene)monooxomolybdenum(IV) complexes by proton-coupled electron transfer in aqueous media. Sugimoto H; Tano H; Miyake H; Itoh S Dalton Trans; 2011 Mar; 40(10):2358-65. PubMed ID: 21246143 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic characterization and O2 reactivity of the trinuclear Cu cluster of mutants of the multicopper oxidase Fet3p. Palmer AE; Quintanar L; Severance S; Wang TP; Kosman DJ; Solomon EI Biochemistry; 2002 May; 41(20):6438-48. PubMed ID: 12009907 [TBL] [Abstract][Full Text] [Related]
20. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. Kosman DJ J Biol Inorg Chem; 2010 Jan; 15(1):15-28. PubMed ID: 19816718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]