These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. NMR Relaxation Dispersion Methods for the Structural and Dynamic Analysis of Quickly Interconverting, Low-Populated Conformational Substates. Veeramuthu Natarajan S; D'Amelio N; Muñoz V Methods Mol Biol; 2022; 2376():187-203. PubMed ID: 34845611 [TBL] [Abstract][Full Text] [Related]
46. CHIP: a co-chaperone for degradation by the proteasome. Edkins AL Subcell Biochem; 2015; 78():219-42. PubMed ID: 25487024 [TBL] [Abstract][Full Text] [Related]
47. Mapping the conformation of a client protein through the Hsp70 functional cycle. Sekhar A; Rosenzweig R; Bouvignies G; Kay LE Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10395-400. PubMed ID: 26240333 [TBL] [Abstract][Full Text] [Related]
48. Structural plasticity of peptidyl-prolyl isomerase sFkpA is a key to its chaperone function as revealed by solution NMR. Hu K; Galius V; Pervushin K Biochemistry; 2006 Oct; 45(39):11983-91. PubMed ID: 17002297 [TBL] [Abstract][Full Text] [Related]
49. From the cradle to the grave: molecular chaperones that may choose between folding and degradation. Höhfeld J; Cyr DM; Patterson C EMBO Rep; 2001 Oct; 2(10):885-90. PubMed ID: 11600451 [TBL] [Abstract][Full Text] [Related]
50. Molecular chaperones maximize the native state yield on biological times by driving substrates out of equilibrium. Chakrabarti S; Hyeon C; Ye X; Lorimer GH; Thirumalai D Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10919-E10927. PubMed ID: 29217641 [TBL] [Abstract][Full Text] [Related]
51. Approaches for probing the sequence space of substrates recognized by molecular chaperones. Kota P; Dokholyan NV Methods; 2011 Mar; 53(3):318-24. PubMed ID: 21195183 [TBL] [Abstract][Full Text] [Related]
52. Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release. Liang FC; Kroon G; McAvoy CZ; Chi C; Wright PE; Shan SO Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1615-24. PubMed ID: 26951662 [TBL] [Abstract][Full Text] [Related]
54. Insights into the client protein release mechanism of the ATP-independent chaperone Spy. He W; Li X; Xue H; Yang Y; Mencius J; Bai L; Zhang J; Xu J; Wu B; Xue Y; Quan S Nat Commun; 2022 May; 13(1):2818. PubMed ID: 35595811 [TBL] [Abstract][Full Text] [Related]
55. Oligomerization of a molecular chaperone modulates its activity. Saio T; Kawagoe S; Ishimori K; Kalodimos CG Elife; 2018 May; 7():. PubMed ID: 29714686 [TBL] [Abstract][Full Text] [Related]
56. Characterizations of the Interactions between Escherichia coli Periplasmic Chaperone HdeA and Its Native Substrates during Acid Stress. Yu XC; Yang C; Ding J; Niu X; Hu Y; Jin C Biochemistry; 2017 Oct; 56(43):5748-5757. PubMed ID: 29016106 [TBL] [Abstract][Full Text] [Related]
57. Substrate specificity in the context of molecular chaperones. Bose D; Chakrabarti A IUBMB Life; 2017 Sep; 69(9):647-659. PubMed ID: 28748601 [TBL] [Abstract][Full Text] [Related]
58. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding. Nagpal S; Tiwari S; Mapa K; Thukral L PLoS Comput Biol; 2015; 11(9):e1004496. PubMed ID: 26394388 [TBL] [Abstract][Full Text] [Related]
59. The dynamic dimer structure of the chaperone Trigger Factor. Morgado L; Burmann BM; Sharpe T; Mazur A; Hiller S Nat Commun; 2017 Dec; 8(1):1992. PubMed ID: 29222465 [TBL] [Abstract][Full Text] [Related]
60. Chaperones Skp and SurA dynamically expand unfolded OmpX and synergistically disassemble oligomeric aggregates. Chamachi N; Hartmann A; Ma MQ; Svirina A; Krainer G; Schlierf M Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35217619 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]