These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 3504496)

  • 1. Electrophoretic study of the degradation properties of poly(L-lactide) microcapsules.
    Makino K; Ohshima H; Kondo T
    J Microencapsul; 1987; 4(1):47-56. PubMed ID: 3504496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of hydrolytic degradation of poly(L-lactide) microcapsules: effects of pH, ionic strength and buffer concentration.
    Makino K; Ohshima H; Kondo T
    J Microencapsul; 1986; 3(3):203-12. PubMed ID: 3508186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of protons from bulk solution to the surface of poly(L-lactide) microcapsules.
    Makino K; Ohshima H; Kondo T
    J Microencapsul; 1986; 3(3):195-202. PubMed ID: 2854157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of plasma proteins on degradation properties of poly(L-lactide) microcapsules.
    Makino K; Ohshima H; Kondo T
    Pharm Res; 1987 Feb; 4(1):62-5. PubMed ID: 2470071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of poly(L-lysine-alt-terephthalic acid) microcapsules with fibrinogen.
    Kidokoro M; Ohshima H; Kondo T
    J Microencapsul; 1991; 8(1):63-70. PubMed ID: 1880691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential distribution across a plasma protein-coated poly(L-lactide) microcapsule surface.
    Makino K; Ohshima H; Kondo T
    J Microencapsul; 1990; 7(2):199-208. PubMed ID: 2329446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of H+ liberated from hydrolytic cleavage of polyester microcapsules on their permeability and degradability.
    Sah H; Chien YW
    J Pharm Sci; 1995 Nov; 84(11):1353-9. PubMed ID: 8587055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence on pH of permeability towards electrolyte ions of poly(L-lysine-alt-terephthalic acid) microcapsule membranes.
    Miyauchi E; Togawa Y; Makino K; Ohshima H; Kondo T
    J Microencapsul; 1992; 9(3):329-33. PubMed ID: 1403483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour.
    Unger F; Wittmar M; Morell F; Kissel T
    Biomaterials; 2008 May; 29(13):2007-14. PubMed ID: 18262641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of biodegradable poly(l-lactide)/poly(ethylene glycol) microcapsules containing erythromycin by emulsion solvent evaporation technique.
    Park SJ; Kim SH
    J Colloid Interface Sci; 2004 Mar; 271(2):336-41. PubMed ID: 14972610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microencapsulation using poly(L-lactic acid) IV: Release properties of microcapsules containing phenobarbitone.
    Jalil R; Nixon JR
    J Microencapsul; 1990; 7(1):53-66. PubMed ID: 2308054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microencapsulation using poly(L-lactic acid). I: Microcapsule properties affected by the preparative technique.
    Jalil R; Nixon JR
    J Microencapsul; 1989; 6(4):473-84. PubMed ID: 2585239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).
    Loh XJ; Tan KK; Li X; Li J
    Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of ζ-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis.
    Voráčová I; Klepárník K; Lišková M; Foret F
    Electrophoresis; 2015 Mar; 36(6):867-74. PubMed ID: 25521532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolayers of poly-L-lysine on mica--Electrokinetic characteristics.
    Morga M; Adamczyk Z; Gödrich S; Oćwieja M; Papastavrou G
    J Colloid Interface Sci; 2015 Oct; 456():116-24. PubMed ID: 26115031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balance of hydrophobic and electrostatic forces in the pH response of weak polyelectrolyte capsules.
    Mauser T; Déjugnat C; Sukhorukov GB
    J Phys Chem B; 2006 Oct; 110(41):20246-53. PubMed ID: 17034202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of particle size on the in vitro and in vivo degradation rates of poly(DL-lactide-co-glycolide) microcapsules.
    Visscher GE; Pearson JE; Fong JW; Argentieri GJ; Robison RL; Maulding HV
    J Biomed Mater Res; 1988 Aug; 22(8):733-46. PubMed ID: 3215907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of exenatide in poly(D,L-lactide-co-glycolide) solutions: a simplified investigation on the peptide degradation by the polymer.
    Liang R; Zhang R; Li X; Wang A; Chen D; Sun K; Liu W; Li Y
    Eur J Pharm Sci; 2013 Nov; 50(3-4):502-10. PubMed ID: 23994054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.
    Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M
    J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic properties of sulfamethoxazole microcapsules and gelatin-acacia coacervates.
    Takenaka H; Kawashima Y; Lin SY
    J Pharm Sci; 1981 Mar; 70(3):302-5. PubMed ID: 7264896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.