BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35046219)

  • 1. [Evaluation of Radiograph Accuracy in Skull X-ray Images Using Deep Learning].
    Mitsutake H; Watanabe H; Sakaguchi A; Uchiyama K; Lee Y; Hayashi N; Shimosegawa M; Ogura T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2022; 78(1):23-32. PubMed ID: 35046219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of retake support system for lateral knee radiographs by using deep convolutional neural network.
    Ohta Y; Matsuzawa H; Yamamoto K; Enchi Y; Kobayashi T; Ishida T
    Radiography (Lond); 2021 Nov; 27(4):1110-1117. PubMed ID: 34092495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images.
    Behzadi-Khormouji H; Rostami H; Salehi S; Derakhshande-Rishehri T; Masoumi M; Salemi S; Keshavarz A; Gholamrezanezhad A; Assadi M; Batouli A
    Comput Methods Programs Biomed; 2020 Mar; 185():105162. PubMed ID: 31715332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic gas detection in prostate cancer patients during image-guided radiation therapy using a deep convolutional neural network.
    Miura H; Ozawa S; Doi Y; Nakao M; Ohnishi K; Kenjo M; Nagata Y
    Phys Med; 2019 Aug; 64():24-28. PubMed ID: 31515026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning.
    Nishio M; Sugiyama O; Yakami M; Ueno S; Kubo T; Kuroda T; Togashi K
    PLoS One; 2018; 13(7):e0200721. PubMed ID: 30052644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of patient's angle from skull radiographs using deep learning.
    Nakazeko K; Kojima S; Watanabe H; Kudo H
    J Xray Sci Technol; 2022; 30(5):1033-1045. PubMed ID: 35848005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can AI distinguish a bone radiograph from photos of flowers or cars? Evaluation of bone age deep learning model on inappropriate data inputs.
    Yi PH; Arun A; Hafezi-Nejad N; Choy G; Sair HI; Hui FK; Fritz J
    Skeletal Radiol; 2022 Feb; 51(2):401-406. PubMed ID: 34351456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs.
    Kim TK; Yi PH; Wei J; Shin JW; Hager G; Hui FK; Sair HI; Lin CT
    J Digit Imaging; 2019 Dec; 32(6):925-930. PubMed ID: 30972585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient Identification Based on Deep Metric Learning for Preventing Human Errors in Follow-up X-Ray Examinations.
    Ueda Y; Morishita J
    J Digit Imaging; 2023 Oct; 36(5):1941-1953. PubMed ID: 37308675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quality control system for mammographic breast positioning using deep learning.
    Watanabe H; Hayashi S; Kondo Y; Matsuyama E; Hayashi N; Ogura T; Shimosegawa M
    Sci Rep; 2023 May; 13(1):7066. PubMed ID: 37127674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating medical images using deep convolutional neural networks: A simulated CT phantom image study.
    Hayashi N; Maruyama T; Sato Y; Watanabe H; Ogura T; Ogura A
    Technol Health Care; 2020; 28(2):113-120. PubMed ID: 31156187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer learning from an artificial radiograph-landmark dataset for registration of the anatomic skull model to dual fluoroscopic X-ray images.
    Zhou C; Cha T; Peng Y; Li G
    Comput Biol Med; 2021 Nov; 138():104923. PubMed ID: 34638020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep convolutional neural network-based skeletal classification of cephalometric image compared with automated-tracing software.
    Kim HJ; Kim KD; Kim DH
    Sci Rep; 2022 Jul; 12(1):11659. PubMed ID: 35804075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making.
    Ciritsis A; Rossi C; Eberhard M; Marcon M; Becker AS; Boss A
    Eur Radiol; 2019 Oct; 29(10):5458-5468. PubMed ID: 30927100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning.
    Yi PH; Kim TK; Wei J; Shin J; Hui FK; Sair HI; Hager GD; Fritz J
    Pediatr Radiol; 2019 Jul; 49(8):1066-1070. PubMed ID: 31041454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs.
    Sim Y; Chung MJ; Kotter E; Yune S; Kim M; Do S; Han K; Kim H; Yang S; Lee DJ; Choi BW
    Radiology; 2020 Jan; 294(1):199-209. PubMed ID: 31714194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating the target exposure index using a deep convolutional neural network and a rule base.
    Takaki T; Murakami S; Watanabe R; Aoki T; Fujibuchi T
    Phys Med; 2020 Mar; 71():108-114. PubMed ID: 32114324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.