These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 35046407)
1. Spontaneous dewetting transitions of droplets during icing & melting cycle. Wang L; Tian Z; Jiang G; Luo X; Chen C; Hu X; Zhang H; Zhong M Nat Commun; 2022 Jan; 13(1):378. PubMed ID: 35046407 [TBL] [Abstract][Full Text] [Related]
2. Multi-Scale Superhydrophobic Surface with Excellent Stability and Solar-Thermal Performance for Highly Efficient Anti-Icing and Deicing. Zhang F; Yan H; Chen M Small; 2024 Aug; 20(32):e2312226. PubMed ID: 38511539 [TBL] [Abstract][Full Text] [Related]
3. Superhydrophobic microstructures for better anti-icing performances: open-cell or closed-cell? Wang L; Jiang G; Tian Z; Chen C; Hu X; Peng R; Zhang H; Fan P; Zhong M Mater Horiz; 2023 Jan; 10(1):209-220. PubMed ID: 36349895 [TBL] [Abstract][Full Text] [Related]
4. Freezing-Melting Mediated Dewetting Transition for Droplets on Superhydrophobic Surfaces with Condensation. Cui J; Wang T; Che Z Langmuir; 2024 Jul; 40(28):14685-14696. PubMed ID: 38970799 [TBL] [Abstract][Full Text] [Related]
5. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. Pan R; Zhang H; Zhong M ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114 [TBL] [Abstract][Full Text] [Related]
6. Dual-Energy-Barrier Stable Superhydrophobic Structures for Long Icing Delay. Wang L; Li D; Jiang G; Hu X; Peng R; Song Z; Zhang H; Fan P; Zhong M ACS Nano; 2024 May; 18(19):12489-12502. PubMed ID: 38698739 [TBL] [Abstract][Full Text] [Related]
7. Atomistic dewetting mechanics of Wenzel and monostable Cassie-Baxter states. Xiao S; Zhang Z; He J Phys Chem Chem Phys; 2018 Oct; 20(38):24759-24767. PubMed ID: 30229243 [TBL] [Abstract][Full Text] [Related]
8. Xuan S; Yin H; Li G; Zhang Z; Jiao Y; Liao Z; Li J; Liu S; Wang Y; Tang C; Wu W; Li G; Yin K ACS Nano; 2023 Nov; 17(21):21749-21760. PubMed ID: 37843015 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Prakash S; Xi E; Patel AJ Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619 [TBL] [Abstract][Full Text] [Related]
10. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces. He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696 [TBL] [Abstract][Full Text] [Related]
11. Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the Anti-Icing and Photothermal Deicing Properties. Xie Z; Wang H; Geng Y; Li M; Deng Q; Tian Y; Chen R; Zhu X; Liao Q ACS Appl Mater Interfaces; 2021 Oct; 13(40):48308-48321. PubMed ID: 34587444 [TBL] [Abstract][Full Text] [Related]
12. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109 [TBL] [Abstract][Full Text] [Related]
13. Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces. Zhang Y; Klittich MR; Gao M; Dhinojwala A ACS Appl Mater Interfaces; 2017 Feb; 9(7):6512-6519. PubMed ID: 28117579 [TBL] [Abstract][Full Text] [Related]
14. Verification of icephobic/anti-icing properties of a superhydrophobic surface. Wang Y; Xue J; Wang Q; Chen Q; Ding J ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106 [TBL] [Abstract][Full Text] [Related]
15. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
16. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces. Lv C; Hao P; Zhang X; He F ACS Nano; 2015 Dec; 9(12):12311-9. PubMed ID: 26565420 [TBL] [Abstract][Full Text] [Related]
17. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances. Wu B; Cui X; Jiang H; Wu N; Peng C; Hu Z; Liang X; Yan Y; Huang J; Li D J Colloid Interface Sci; 2021 May; 590():301-310. PubMed ID: 33548613 [TBL] [Abstract][Full Text] [Related]
18. Icephobic/anti-icing properties of superhydrophobic surfaces. Huang W; Huang J; Guo Z; Liu W Adv Colloid Interface Sci; 2022 Jun; 304():102658. PubMed ID: 35381422 [TBL] [Abstract][Full Text] [Related]
19. Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests. Tian Z; Wang L; Zhu D; Chen C; Zhao H; Peng R; Zhang H; Fan P; Zhong M ACS Appl Mater Interfaces; 2023 Feb; 15(4):6013-6024. PubMed ID: 36656131 [TBL] [Abstract][Full Text] [Related]
20. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. Liu G; Fu L; Rode AV; Craig VS Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]