These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35046522)

  • 1. Sense of agency for intracortical brain-machine interfaces.
    Serino A; Bockbrader M; Bertoni T; Colachis Iv S; Solcà M; Dunlap C; Eipel K; Ganzer P; Annetta N; Sharma G; Orepic P; Friedenberg D; Sederberg P; Faivre N; Rezai A; Blanke O
    Nat Hum Behav; 2022 Apr; 6(4):565-578. PubMed ID: 35046522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Cognition with Brain-Machine Interfaces.
    Andersen RA; Aflalo T; Bashford L; Bjånes D; Kellis S
    Annu Rev Psychol; 2022 Jan; 73():131-158. PubMed ID: 34982594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How using brain-machine interfaces influences the human sense of agency.
    Caspar EA; De Beir A; Lauwers G; Cleeremans A; Vanderborght B
    PLoS One; 2021; 16(1):e0245191. PubMed ID: 33411838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Feedback Dominates the Sense of Agency for Brain-Machine Actions.
    Evans N; Gale S; Schurger A; Blanke O
    PLoS One; 2015; 10(6):e0130019. PubMed ID: 26066840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical and subcortical mechanisms of brain-machine interfaces.
    Marchesotti S; Martuzzi R; Schurger A; Blefari ML; Del Millán JR; Bleuler H; Blanke O
    Hum Brain Mapp; 2017 Jun; 38(6):2971-2989. PubMed ID: 28321973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agency and responsibility over virtual movements controlled through different paradigms of brain-computer interface.
    Nierula B; Spanlang B; Martini M; Borrell M; Nikulin VV; Sanchez-Vives MV
    J Physiol; 2021 May; 599(9):2419-2434. PubMed ID: 31647122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface.
    Ganzer PD; Colachis SC; Schwemmer MA; Friedenberg DA; Dunlap CF; Swiftney CE; Jacobowitz AF; Weber DJ; Bockbrader MA; Sharma G
    Cell; 2020 May; 181(4):763-773.e12. PubMed ID: 32330415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural control of finger movement via intracortical brain-machine interface.
    Irwin ZT; Schroeder KE; Vu PP; Bullard AJ; Tat DM; Nu CS; Vaskov A; Nason SR; Thompson DE; Bentley JN; Patil PG; Chestek CA
    J Neural Eng; 2017 Dec; 14(6):066004. PubMed ID: 28722685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
    Nason SR; Mender MJ; Vaskov AK; Willsey MS; Ganesh Kumar N; Kung TA; Patil PG; Chestek CA
    Neuron; 2021 Oct; 109(19):3164-3177.e8. PubMed ID: 34499856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological properties of brain-machine interface input signals.
    Slutzky MW; Flint RD
    J Neurophysiol; 2017 Aug; 118(2):1329-1343. PubMed ID: 28615329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning approach to characterize sequential movement-related states in premotor and motor cortices.
    DePass M; Falaki A; Quessy S; Dancause N; Cos I
    J Neurophysiol; 2022 May; 127(5):1348-1362. PubMed ID: 35171745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface.
    Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J
    Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning active sensing strategies using a sensory brain-machine interface.
    Richardson AG; Ghenbot Y; Liu X; Hao H; Rinehart C; DeLuccia S; Torres Maldonado S; Boyek G; Zhang M; Aflatouni F; Van der Spiegel J; Lucas TH
    Proc Natl Acad Sci U S A; 2019 Aug; 116(35):17509-17514. PubMed ID: 31409713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges.
    Bensmaia SJ; Miller LE
    Nat Rev Neurosci; 2014 May; 15(5):313-25. PubMed ID: 24739786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on directional information in neural signals for brain-machine interfaces.
    Waldert S; Pistohl T; Braun C; Ball T; Aertsen A; Mehring C
    J Physiol Paris; 2009; 103(3-5):244-54. PubMed ID: 19665554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control.
    Flint RD; Scheid MR; Wright ZA; Solla SA; Slutzky MW
    J Neurosci; 2016 Mar; 36(12):3623-32. PubMed ID: 27013690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The science and engineering behind sensitized brain-controlled bionic hands.
    Pandarinath C; Bensmaia SJ
    Physiol Rev; 2022 Apr; 102(2):551-604. PubMed ID: 34541898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural signatures of visuo-motor integration during human-robot interactions.
    Marchesotti S; Bernasconi F; Rognini G; De Lucia M; Bleuler H; Blanke O
    Front Neurorobot; 2022; 16():1034615. PubMed ID: 36776553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Going beyond primary motor cortex to improve brain-computer interfaces.
    Gallego JA; Makin TR; McDougle SD
    Trends Neurosci; 2022 Mar; 45(3):176-183. PubMed ID: 35078639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bidirectional brain-computer interfaces.
    Hughes C; Herrera A; Gaunt R; Collinger J
    Handb Clin Neurol; 2020; 168():163-181. PubMed ID: 32164851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.