These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 35046926)

  • 1. Robust Heat Shock Response in
    Huang Y; Wurihan W; Lu B; Zou Y; Wang Y; Weldon K; Fondell JD; Lai Z; Wu X; Fan H
    Front Microbiol; 2021; 12():812448. PubMed ID: 35046926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a GrgA-Euo-HrcA Transcriptional Regulatory Network in Chlamydia.
    Wurihan W; Zou Y; Weber AM; Weldon K; Huang Y; Bao X; Zhu C; Wu X; Wang Y; Lai Z; Fan H
    mSystems; 2021 Aug; 6(4):e0073821. PubMed ID: 34342542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of the Chlamydia heat shock stress response in an intracellular infection.
    Hanson BR; Tan M
    Mol Microbiol; 2015 Sep; 97(6):1158-67. PubMed ID: 26075961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions.
    Wilson AC; Tan M
    J Bacteriol; 2004 Jun; 186(11):3384-91. PubMed ID: 15150223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the heat shock regulator HrcA of Chlamydia trachomatis.
    Wilson AC; Tan M
    J Bacteriol; 2002 Dec; 184(23):6566-71. PubMed ID: 12426345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock response of murine Chlamydia trachomatis.
    Engel JN; Pollack J; Perara E; Ganem D
    J Bacteriol; 1990 Dec; 172(12):6959-72. PubMed ID: 2254267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Chlamydia-specific C-terminal region of the stress response regulator HrcA modulates its repressor activity.
    Chen AL; Wilson AC; Tan M
    J Bacteriol; 2011 Dec; 193(23):6733-41. PubMed ID: 21965565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pivotal role of the Francisella tularensis heat-shock sigma factor RpoH.
    Grall N; Livny J; Waldor M; Barel M; Charbit A; Meibom KL
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2560-2572. PubMed ID: 19443547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feeling the Heat: The
    Versace G; Palombo M; Menon A; Scarlato V; Roncarati D
    Biomolecules; 2021 Sep; 11(10):. PubMed ID: 34680046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE.
    Roberts RC; Toochinda C; Avedissian M; Baldini RL; Gomes SL; Shapiro L
    J Bacteriol; 1996 Apr; 178(7):1829-41. PubMed ID: 8606155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential and independent roles of a sigma(32) homolog (RpoH) and an HrcA repressor in the heat shock response of Agrobacterium tumefaciens.
    Nakahigashi K; Ron EZ; Yanagi H; Yura T
    J Bacteriol; 1999 Dec; 181(24):7509-15. PubMed ID: 10601208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sigma 54-Regulated Transcription Is Associated with Membrane Reorganization and Type III Secretion Effectors during Conversion to Infectious Forms of Chlamydia trachomatis.
    Soules KR; LaBrie SD; May BH; Hefty PS
    mBio; 2020 Sep; 11(5):. PubMed ID: 32900805
    [No Abstract]   [Full Text] [Related]  

  • 13. The Bradyrhizobium japonicum rpoH1 gene encoding a sigma 32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes.
    Narberhaus F; Weiglhofer W; Fischer HM; Hennecke H
    J Bacteriol; 1996 Sep; 178(18):5337-46. PubMed ID: 8808920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus.
    da Silva AC; Simão RC; Susin MF; Baldini RL; Avedissian M; Gomes SL
    Mol Microbiol; 2003 Jul; 49(2):541-53. PubMed ID: 12828648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output.
    Roncarati D; Scarlato V
    FEMS Microbiol Rev; 2017 Jul; 41(4):549-574. PubMed ID: 28402413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the alternative sigma factor regulons of
    Hatch ND; Ouellette SP
    bioRxiv; 2023 Apr; ():. PubMed ID: 37162869
    [No Abstract]   [Full Text] [Related]  

  • 17. Circuit architecture explains functional similarity of bacterial heat shock responses.
    Inoue M; Mitarai N; Trusina A
    Phys Biol; 2012 Dec; 9(6):066003. PubMed ID: 23114274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmid Negative Regulation of CPAF Expression Is Pgp4 Independent and Restricted to Invasive
    Patton MJ; Chen CY; Yang C; McCorrister S; Grant C; Westmacott G; Yuan XY; Ochoa E; Fariss R; Whitmire WM; Carlson JH; Caldwell HD; McClarty G
    mBio; 2018 Jan; 9(1):. PubMed ID: 29382731
    [No Abstract]   [Full Text] [Related]  

  • 19. Global transcriptional response of Bacillus subtilis to heat shock.
    Helmann JD; Wu MF; Kobel PA; Gamo FJ; Wilson M; Morshedi MM; Navre M; Paddon C
    J Bacteriol; 2001 Dec; 183(24):7318-28. PubMed ID: 11717291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System.
    Gao L; Cong Y; Plano GV; Rao X; Gisclair LN; Schesser Bartra S; Macnaughtan MA; Shen L
    J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32424009
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.