BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35047015)

  • 1. Indirect Routes to Aminoacyl-tRNA: The Diversity of Prokaryotic Cysteine Encoding Systems.
    Mukai T; Amikura K; Fu X; Söll D; Crnković A
    Front Genet; 2021; 12():794509. PubMed ID: 35047015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea.
    Mukai T; Crnković A; Umehara T; Ivanova NN; Kyrpides NC; Söll D
    mBio; 2017 May; 8(3):. PubMed ID: 28487430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic analysis of a subcomplex of the transsulfursome with tRNA for Cys-tRNA(Cys) synthesis.
    Chen M; Nakazawa Y; Kubo Y; Asano N; Kato K; Tanaka I; Yao M
    Acta Crystallogr F Struct Biol Commun; 2016 Jul; 72(Pt 7):569-72. PubMed ID: 27380375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for tRNA-dependent cysteine biosynthesis.
    Chen M; Kato K; Kubo Y; Tanaka Y; Liu Y; Long F; Whitman WB; Lill P; Gatsogiannis C; Raunser S; Shimizu N; Shinoda A; Nakamura A; Tanaka I; Yao M
    Nat Commun; 2017 Nov; 8(1):1521. PubMed ID: 29142195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancient translation factor is essential for tRNA-dependent cysteine biosynthesis in methanogenic archaea.
    Liu Y; Nakamura A; Nakazawa Y; Asano N; Ford KA; Hohn MJ; Tanaka I; Yao M; Söll D
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10520-5. PubMed ID: 25002468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-dependent cysteine biosynthesis in archaea.
    Sauerwald A; Zhu W; Major TA; Roy H; Palioura S; Jahn D; Whitman WB; Yates JR; Ibba M; Söll D
    Science; 2005 Mar; 307(5717):1969-72. PubMed ID: 15790858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of the universal genetic code imprinted in an RNA record.
    Hohn MJ; Park HS; O'Donoghue P; Schnitzbauer M; Söll D
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18095-100. PubMed ID: 17110438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys).
    Zhang CM; Liu C; Slater S; Hou YM
    Nat Struct Mol Biol; 2008 May; 15(5):507-14. PubMed ID: 18425141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei.
    Hauenstein SI; Perona JJ
    J Biol Chem; 2008 Aug; 283(32):22007-17. PubMed ID: 18559341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2007 Jun; 370(1):128-41. PubMed ID: 17512006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tRNA-dependent cysteine biosynthesis enzyme recognizes the selenocysteine-specific tRNA in Escherichia coli.
    Yuan J; Hohn MJ; Sherrer RL; Palioura S; Su D; Söll D
    FEBS Lett; 2010 Jul; 584(13):2857-61. PubMed ID: 20493852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From one amino acid to another: tRNA-dependent amino acid biosynthesis.
    Sheppard K; Yuan J; Hohn MJ; Jester B; Devine KM; Söll D
    Nucleic Acids Res; 2008 Apr; 36(6):1813-25. PubMed ID: 18252769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2007 Apr; 14(4):272-9. PubMed ID: 17351629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolutionary history of Cys-tRNACys formation.
    O'Donoghue P; Sethi A; Woese CR; Luthey-Schulten ZA
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19003-8. PubMed ID: 16380427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid modifications on tRNA.
    Yuan J; Sheppard K; Söll D
    Acta Biochim Biophys Sin (Shanghai); 2008 Jul; 40(7):539-53. PubMed ID: 18604446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward understanding phosphoseryl-tRNACys formation: the crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase.
    Kamtekar S; Hohn MJ; Park HS; Schnitzbauer M; Sauerwald A; Söll D; Steitz TA
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2620-5. PubMed ID: 17301225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis.
    Turanov AA; Xu XM; Carlson BA; Yoo MH; Gladyshev VN; Hatfield DL
    Adv Nutr; 2011 Mar; 2(2):122-8. PubMed ID: 22332041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recoding of the selenocysteine UGA codon by cysteine in the presence of a non-canonical tRNA
    Vargas-Rodriguez O; Englert M; Merkuryev A; Mukai T; Söll D
    RNA Biol; 2018; 15(4-5):471-479. PubMed ID: 29879865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The homotetrameric phosphoseryl-tRNA synthetase from Methanosarcina mazei exhibits half-of-the-sites activity.
    Hauenstein SI; Hou YM; Perona JJ
    J Biol Chem; 2008 Aug; 283(32):21997-2006. PubMed ID: 18559342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminoacylation of tRNA 2'- or 3'-hydroxyl by phosphoseryl- and pyrrolysyl-tRNA synthetases.
    Englert M; Moses S; Hohn M; Ling J; O'Donoghue P; Söll D
    FEBS Lett; 2013 Oct; 587(20):3360-4. PubMed ID: 24021645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.