These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35047078)

  • 1. Peptide stapling by late-stage Suzuki-Miyaura cross-coupling.
    Gruß H; Feiner RC; Mseya R; Schröder DC; Jewgiński M; Müller KM; Latajka R; Marion A; Sewald N
    Beilstein J Org Chem; 2022; 18():1-12. PubMed ID: 35047078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel peptide stapling strategy enables the retention of ring-closing amino acid side chains for the Wnt/β-catenin signalling pathway.
    Wu Y; Li YH; Li X; Zou Y; Liao HL; Liu L; Chen YG; Bierer D; Hu HG
    Chem Sci; 2017 Nov; 8(11):7368-7373. PubMed ID: 29163887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Biological Activity of RGD Peptides with Halotryptophans†.
    Kemker I; Schröder DC; Feiner RC; Müller KM; Marion A; Sewald N
    J Med Chem; 2021 Jan; 64(1):586-601. PubMed ID: 33356253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suzuki-Miyaura Cross-Coupling of Bromotryptophan Derivatives at Ambient Temperature.
    Dachwitz S; Duwe DH; Wang YH; Gruß H; Hannappel Y; Hellweg T; Sewald N
    Chemistry; 2020 Dec; 26(69):16357-16364. PubMed ID: 32639079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the geometric and hydrophobic constraints of stapled peptides.
    Li J; Tan YS; Verma CS
    Proteins; 2024 Jan; ():. PubMed ID: 38196284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Thiol-Ene Coupling Approach to Native Peptide Stapling and Macrocyclization.
    Wang Y; Chou DH
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10931-4. PubMed ID: 26189498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable-Length Ester-Based Staples for α-Helical Peptides by Using A Double Thiol-ene Reaction.
    Paterson DL; Flanagan JU; Shepherd PR; Harris PWR; Brimble MA
    Chemistry; 2020 Aug; 26(47):10826-10833. PubMed ID: 32232881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of 2-component i, i + 3 peptide stapling using thioethers.
    St Louis LE; Rodriguez TM; Waters ML
    Bioorg Med Chem; 2018 Mar; 26(6):1203-1205. PubMed ID: 29122441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unprotected peptide macrocyclization and stapling via a fluorine-thiol displacement reaction.
    Islam MS; Junod SL; Zhang S; Buuh ZY; Guan Y; Zhao M; Kaneria KH; Kafley P; Cohen C; Maloney R; Lyu Z; Voelz VA; Yang W; Wang RE
    Nat Commun; 2022 Jan; 13(1):350. PubMed ID: 35039490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of LXXLL-mediated DAX1/SHP-nuclear receptor interaction network and rational design of stapled LXXLL-based peptides to target the specific network profile.
    Qian H; He P; Lv F; Wu W
    Int J Biol Macromol; 2019 May; 129():13-22. PubMed ID: 30731167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bis-Lactam Peptide [
    Wu B; Zheng W
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33019638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Bifunctional, Raman Active Diyne-Girder Stapled α-Helical Peptides.
    Morgan DC; McDougall L; Knuhtsen A; Jamieson AG
    Chemistry; 2023 Jul; 29(41):e202300855. PubMed ID: 37130830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based derivation and optimization of YAP-like coactivator-derived peptides to selectively target TEAD family transcription factors by hydrocarbon stapling and cyclization.
    He B; Wu T; He P; Lv F; Liu H
    Chem Biol Drug Des; 2021 Jun; 97(6):1129-1136. PubMed ID: 33283479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Bridge Stereochemistry: A Determinant of Stapled Peptide Conformation and Activity.
    Zhang J; Dong S
    Chembiochem; 2024 Apr; 25(7):e202300747. PubMed ID: 38191871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling and rational design of hydrocarbon-stapled/halogenated helical peptides targeting CETP self-binding site: Therapeutic implication for atherosclerosis.
    Zhu J; Wei S; Huang L; Zhao Q; Zhu H; Zhang A
    J Mol Graph Model; 2020 Jan; 94():107455. PubMed ID: 31586754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Method to Calculate the Relative Binding Free Energy Differences of α-Helical Stapled Peptides.
    Valiente PA; Becerra D; Kim PM
    J Org Chem; 2020 Feb; 85(3):1644-1651. PubMed ID: 31893470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Revised Modular Approach to (-)-
    Bloemendal VRLJ; Sondag D; Elferink H; Boltje TJ; van Hest JCM; Rutjes FPJT
    European J Org Chem; 2019 Mar; 2019(12):2289-2296. PubMed ID: 31423106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of triazole-stapled BCL9 α-helical peptides to target the β-catenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction.
    Kawamoto SA; Coleska A; Ran X; Yi H; Yang CY; Wang S
    J Med Chem; 2012 Feb; 55(3):1137-46. PubMed ID: 22196480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stapled Peptides Based on Human Angiotensin-Converting Enzyme 2 (ACE2) Potently Inhibit SARS-CoV-2 Infection
    Curreli F; Victor SMB; Ahmed S; Drelich A; Tong X; Tseng CK; Hillyer CD; Debnath AK
    mBio; 2020 Dec; 11(6):. PubMed ID: 33310780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide Ligation via the Suzuki-Miyaura Cross-Coupling Reaction.
    Lee TK; Manandhar B; Kassees KJ; Ahn JM
    J Org Chem; 2020 Feb; 85(3):1376-1384. PubMed ID: 31773962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.