These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35047768)
1. The Bayes Estimators of the Variance and Scale Parameters of the Normal Model With a Known Mean for the Conjugate and Noninformative Priors Under Stein's Loss. Zhang YY; Rong TZ; Li MM Front Big Data; 2021; 4():763925. PubMed ID: 35047768 [TBL] [Abstract][Full Text] [Related]
2. Wavelet threshold based on Stein's unbiased risk estimators of restricted location parameter in multivariate normal. Karamikabir H; Afshari M; Lak F J Appl Stat; 2021; 48(10):1712-1729. PubMed ID: 35706713 [TBL] [Abstract][Full Text] [Related]
3. Least squares estimation without priors or supervision. Raphan M; Simoncelli EP Neural Comput; 2011 Feb; 23(2):374-420. PubMed ID: 21105827 [TBL] [Abstract][Full Text] [Related]
4. On the improved estimation of a function of the scale parameter of an exponential distribution based on doubly censored sample. Patra LK J Appl Stat; 2020; 47(9):1637-1651. PubMed ID: 35707581 [TBL] [Abstract][Full Text] [Related]
5. An Empirical Bayes Approach to Shrinkage Estimation on the Manifold of Symmetric Positive-Definite Matrices. Yang CH; Doss H; Vemuri BC J Am Stat Assoc; 2024; 119(545):259-272. PubMed ID: 38590837 [TBL] [Abstract][Full Text] [Related]
6. On approximations of Stein's neuronal model. Lánský P J Theor Biol; 1984 Apr; 107(4):631-47. PubMed ID: 6738088 [TBL] [Abstract][Full Text] [Related]
7. Ridge Regression Method and Bayesian Estimators under Composite LINEX Loss Function to Estimate the Shape Parameter in Lomax Distribution. Yassen MF; Al-Duais FS; Almazah MMA Comput Intell Neurosci; 2022; 2022():1200611. PubMed ID: 36072714 [TBL] [Abstract][Full Text] [Related]
8. Implications of Stein's Paradox for Environmental Standard Compliance Assessment. Qian SS; Stow CA; Cha Y Environ Sci Technol; 2015 May; 49(10):5913-20. PubMed ID: 25867542 [TBL] [Abstract][Full Text] [Related]
9. Stein's neuronal model with pooled renewal input. Rajdl K; Lansky P Biol Cybern; 2015 Jun; 109(3):389-99. PubMed ID: 25910437 [TBL] [Abstract][Full Text] [Related]
10. Optimal control of input rates of Stein's models. Lu L Math Med Biol; 2011 Mar; 28(1):31-46. PubMed ID: 20421193 [TBL] [Abstract][Full Text] [Related]
11. An algebraic aspect of Pareto mixture parameter estimation using censored sample: A Bayesian approach. Saleem M; Sharif K; Fahmi A J Integr Neurosci; 2018; 17(3-4):463-477. PubMed ID: 29710728 [TBL] [Abstract][Full Text] [Related]
12. Equivariant minimax dominators of the MLE in the array normal model. Gerard D; Hoff P J Multivar Anal; 2015 May; 137():32-49. PubMed ID: 25745274 [TBL] [Abstract][Full Text] [Related]
14. Bayes factor in one-sample tests of means with a sensitivity analysis: A discussion of separate prior distributions. Du H; Edwards MC; Zhang Z Behav Res Methods; 2019 Oct; 51(5):1998-2021. PubMed ID: 31161425 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction. Weller DS; Ramani S; Nielsen JF; Fessler JA Magn Reson Med; 2014 May; 71(5):1760-70. PubMed ID: 23821331 [TBL] [Abstract][Full Text] [Related]
16. Estimation of parameters of inverse Weibull distribution and application to multi-component stress-strength model. Jana N; Bera S J Appl Stat; 2022; 49(1):169-194. PubMed ID: 35707805 [TBL] [Abstract][Full Text] [Related]
17. The choice of a noninformative prior on between-study variance strongly affects predictions of future treatment effect. Gajic-Veljanoski O; Cheung AM; Bayoumi AM; Tomlinson G Med Decis Making; 2013 Apr; 33(3):356-68. PubMed ID: 22927698 [TBL] [Abstract][Full Text] [Related]
18. SURE Estimates for a Heteroscedastic Hierarchical Model. Xie X; Kou SC; Brown LD J Am Stat Assoc; 2012 Dec; 107(500):1465-1479. PubMed ID: 25301976 [TBL] [Abstract][Full Text] [Related]
19. Loss functions in restricted parameter spaces and their Bayesian applications. Mozgunov P; Jaki T; Gasparini M J Appl Stat; 2019; 46(13):2314-2337. PubMed ID: 32256183 [TBL] [Abstract][Full Text] [Related]
20. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data. Dazard JE; Rao JS Comput Stat Data Anal; 2012 Jul; 56(7):2317-2333. PubMed ID: 22711950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]