These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35047812)

  • 1. Adaptive and powerful microbiome multivariate association analysis via feature selection.
    Banerjee K; Chen J; Zhan X
    NAR Genom Bioinform; 2022 Mar; 4(1):lqab120. PubMed ID: 35047812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Adaptive Multivariate Two-Sample Test With Application to Microbiome Differential Abundance Analysis.
    Banerjee K; Zhao N; Srinivasan A; Xue L; Hicks SD; Middleton FA; Wu R; Zhan X
    Front Genet; 2019; 10():350. PubMed ID: 31068967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals.
    Koh H; Zhao N
    Microbiome; 2020 May; 8(1):63. PubMed ID: 32393397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies.
    Koh H; Li Y; Zhan X; Chen J; Zhao N
    Front Genet; 2019; 10():458. PubMed ID: 31156711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adaptive association test for microbiome data.
    Wu C; Chen J; Kim J; Pan W
    Genome Med; 2016 May; 8(1):56. PubMed ID: 27198579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A small-sample multivariate kernel machine test for microbiome association studies.
    Zhan X; Tong X; Zhao N; Maity A; Wu MC; Chen J
    Genet Epidemiol; 2017 Apr; 41(3):210-220. PubMed ID: 28019040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly adaptive microbiome-based association test for survival traits.
    Koh H; Livanos AE; Blaser MJ; Li H
    BMC Genomics; 2018 Mar; 19(1):210. PubMed ID: 29558893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust biomarker discovery for microbiome-wide association studies.
    Zhu Q; Li B; He T; Li G; Jiang X
    Methods; 2020 Feb; 173():44-51. PubMed ID: 31238097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A distance-based approach for testing the mediation effect of the human microbiome.
    Zhang J; Wei Z; Chen J
    Bioinformatics; 2018 Jun; 34(11):1875-1883. PubMed ID: 29346509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-stage microbial association mapping framework with advanced FDR control.
    Hu J; Koh H; He L; Liu M; Blaser MJ; Li H
    Microbiome; 2018 Jul; 6(1):131. PubMed ID: 30045760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations.
    Sun H; Huang X; Huo B; Tan Y; He T; Jiang X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35561307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels.
    Sun H; Huang X; Fu L; Huo B; He T; Jiang X
    J Genet Genomics; 2021 Sep; 48(9):851-859. PubMed ID: 34411712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta-analysis methods for multiple related markers: Applications to microbiome studies with the results on multiple α-diversity indices.
    Koh H; Tuddenham S; Sears CL; Zhao N
    Stat Med; 2021 May; 40(12):2859-2876. PubMed ID: 33768631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simultaneous Feature Selection and Compositional Association Test for Detecting Sparse Associations in High-Dimensional Metagenomic Data.
    Hinton AL; Mucha PJ
    Front Microbiol; 2022; 13():837396. PubMed ID: 35387076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A maximum-type microbial differential abundance test with application to high-dimensional microbiome data analyses.
    Li Z; Yu X; Guo H; Lee T; Hu J
    Front Cell Infect Microbiol; 2022; 12():988717. PubMed ID: 36389165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pldist: ecological dissimilarities for paired and longitudinal microbiome association analysis.
    Plantinga AM; Chen J; Jenq RR; Wu MC
    Bioinformatics; 2019 Oct; 35(19):3567-3575. PubMed ID: 30863868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association studies of brain imaging data via weighted distance correlation.
    Wen C; Yang Y; Xiao Q; Huang M; Pan W;
    Bioinformatics; 2020 Dec; 36(19):4942-4950. PubMed ID: 32619001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.