BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 35048091)

  • 1. Progress in Mo/W-based electrocatalysts for nitrogen reduction to ammonia under ambient conditions.
    Zeng L; Qiao Z; Peng X; Liu Z; Li Z; Yang B; Lei L; Wu G; Hou Y
    Chem Commun (Camb); 2022 Feb; 58(13):2096-2111. PubMed ID: 35048091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Progress of Electrocatalysts for Ammonia Synthesis Through Electrochemical Nitrogen Reduction Under Ambient Conditions.
    Liu A; Yang Y; Ren X; Zhao Q; Gao M; Guan W; Meng F; Gao L; Yang Q; Liang X; Ma T
    ChemSusChem; 2020 Aug; 13(15):3766-3788. PubMed ID: 32302057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of catalysts for electrochemical nitrogen reduction toward ammonia: theoretical and experimental advances.
    Cui Y; Sun C; Qu Y; Dai T; Zhou H; Wang Z; Jiang Q
    Chem Commun (Camb); 2022 Sep; 58(74):10290-10302. PubMed ID: 36043384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Overview on Noble Metal (Group VIII)-based Heterogeneous Electrocatalysts for Nitrogen Reduction Reaction.
    Chen Q; Zhang X; Jin Y; Zhou X; Yang Z; Nie H
    Chem Asian J; 2020 Dec; 15(24):4131-4152. PubMed ID: 33025764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition-metal-based Catalysts for Electrochemical Synthesis of Ammonia by Nitrogen Reduction Reaction: Advancing the Green Ammonia Economy.
    Akter R; Shah SS; Ehsan MA; Shaikh MN; Zahir MH; Aziz MA; Ahammad AJS
    Chem Asian J; 2023 Oct; ():e202300797. PubMed ID: 37812018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency.
    Zhang C; Wang Z; Lei J; Ma L; Yakobson BI; Tour JM
    Small; 2022 Apr; 18(15):e2106327. PubMed ID: 35278039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions.
    Qiu Y; Peng X; Lü F; Mi Y; Zhuo L; Ren J; Liu X; Luo J
    Chem Asian J; 2019 Aug; 14(16):2770-2779. PubMed ID: 31290592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mo-Doped FeP Nanospheres for Artificial Nitrogen Fixation.
    Luo YX; Qiu WB; Liang RP; Xia XH; Qiu JD
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17452-17458. PubMed ID: 32195566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting Electrocatalytic Ammonia Synthesis of Bio-Inspired Porous Mo-Doped Hematite via Nitrogen Activation.
    Niu ZY; Jiao L; Zhang T; Zhao XM; Wang XF; Tan Z; Liu LZ; Chen S; Song XZ
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55559-55567. PubMed ID: 36479880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia.
    Majumder M; Saini H; Dědek I; Schneemann A; Chodankar NR; Ramarao V; Santosh MS; Nanjundan AK; Kment Š; Dubal D; Otyepka M; Zbořil R; Jayaramulu K
    ACS Nano; 2021 Nov; 15(11):17275-17298. PubMed ID: 34751563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration and Investigation of Periodic Elements for Electrocatalytic Nitrogen Reduction.
    Patil SB; Wang DY
    Small; 2020 Nov; 16(45):e2002885. PubMed ID: 32945097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts.
    Cui X; Tang C; Liu XM; Wang C; Ma W; Zhang Q
    Chemistry; 2018 Dec; 24(69):18494-18501. PubMed ID: 29907981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced electrocatalytic performance of TiO
    Chen HJ; Deng GR; Feng ZS; Xu ZQ; Yang MY; Huang Y; Peng Q; Li T; Wang Y
    Chem Commun (Camb); 2022 Mar; 58(19):3214-3217. PubMed ID: 35174822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambient Ammonia Electrosynthesis: Current Status, Challenges, and Perspectives.
    Lv XW; Weng CC; Yuan ZY
    ChemSusChem; 2020 Jun; 13(12):3061-3078. PubMed ID: 32202392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Multisites Fe
    Lu K; Xia F; Li B; Liu Y; Abdul Razak IB; Gao S; Kaelin J; Brown DE; Cheng Y
    ACS Nano; 2021 Oct; 15(10):16887-16895. PubMed ID: 34612041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disordered Au Nanoclusters for Efficient Ammonia Electrosynthesis.
    Peng X; Zhang R; Mi Y; Wang HT; Huang YC; Han L; Head AR; Pao CW; Liu X; Dong CL; Liu Q; Zhang S; Pong WF; Luo J; Xin HL
    ChemSusChem; 2023 Apr; 16(7):e202201385. PubMed ID: 36683007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Vacancies of Cr-Doped CeO
    Xie H; Wang H; Geng Q; Xing Z; Wang W; Chen J; Ji L; Chang L; Wang Z; Mao J
    Inorg Chem; 2019 May; 58(9):5423-5427. PubMed ID: 31007026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction.
    Pang Y; Su C; Jia G; Xu L; Shao Z
    Chem Soc Rev; 2021 Nov; 50(22):12744-12787. PubMed ID: 34647937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P-Block Metal-Based Electrocatalysts for Nitrogen Reduction to Ammonia: A Minireview.
    Li S; Wang Y; Du Y; Zhu XD; Gao J; Zhang YC; Wu G
    Small; 2023 Apr; 19(16):e2206776. PubMed ID: 36610010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Nitrogen Fixation Using Well-defined Molecular Catalysts under Ambient or Mild Reaction Conditions.
    Tanabe Y; Nishibayashi Y
    Angew Chem Int Ed Engl; 2024 May; ():e202406404. PubMed ID: 38781115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.