These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 35048121)

  • 1. A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings.
    Shen H; Shen X; Feng M; Wu D; Zhang C; Yang Y; Yang M; Hu J; Liu J; Wang W; Li Y; Zhang Q; Yang J; Chen K; Li X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35048121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative pretraining from large-scale transcriptomes for single-cell deciphering.
    Shen H; Liu J; Hu J; Shen X; Zhang C; Wu D; Feng M; Yang M; Li Y; Yang Y; Wang W; Zhang Q; Yang J; Chen K; Li X
    iScience; 2023 May; 26(5):106536. PubMed ID: 37187700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable batch-correction approach for integrating large-scale single-cell transcriptomes.
    Shen X; Shen H; Wu D; Feng M; Hu J; Liu J; Yang Y; Yang M; Li Y; Shi L; Chen K; Li X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35947966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer.
    Xu Y; Wang Y; Ma S
    Cell Rep Methods; 2024 Jul; 4(7):100813. PubMed ID: 38971150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate and fast cell marker gene identification with COSG.
    Dai M; Pei X; Wang XJ
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35048116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data.
    Wang CX; Zhang L; Wang B
    Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative single-cell multi-omic integration using online learning.
    Gao C; Liu J; Kriebel AR; Preissl S; Luo C; Castanon R; Sandoval J; Rivkin A; Nery JR; Behrens MM; Ecker JR; Ren B; Welch JD
    Nat Biotechnol; 2021 Aug; 39(8):1000-1007. PubMed ID: 33875866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating transcriptome-wide sex dimorphism by multi-level analysis of single-cell RNA sequencing data in ten mouse cell types.
    Lu T; Mar JC
    Biol Sex Differ; 2020 Nov; 11(1):61. PubMed ID: 33153500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scESI: evolutionary sparse imputation for single-cell transcriptomes from nearest neighbor cells.
    Liu Q; Luo X; Li J; Wang G
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35512331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell Heterogeneity Analysis in Single-Cell RNA-seq Data Using Mixture Exponential Graph and Markov Random Field Model.
    Wang Y; Tian X; Ai D
    Biomed Res Int; 2021; 2021():9919080. PubMed ID: 34095314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-Based Single-Cell RNA-Seq Data Imputation Enhances Cell Type Identification.
    Zand M; Ruan J
    Genes (Basel); 2020 Mar; 11(4):. PubMed ID: 32244427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data.
    Vandenbon A; Diez D
    Nat Commun; 2020 Aug; 11(1):4318. PubMed ID: 32859930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. bigSCale: an analytical framework for big-scale single-cell data.
    Iacono G; Mereu E; Guillaumet-Adkins A; Corominas R; Cuscó I; Rodríguez-Esteban G; Gut M; Pérez-Jurado LA; Gut I; Heyn H
    Genome Res; 2018 Jun; 28(6):878-890. PubMed ID: 29724792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of cell types from single-cell transcriptomes using a novel clustering method.
    Xu C; Su Z
    Bioinformatics; 2015 Jun; 31(12):1974-80. PubMed ID: 25805722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of deep learning-based pre-processing and clustering approaches for single-cell RNA sequencing data.
    Wang J; Zou Q; Lin C
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial charting of single-cell transcriptomes in tissues.
    Wei R; He S; Bai S; Sei E; Hu M; Thompson A; Chen K; Krishnamurthy S; Navin NE
    Nat Biotechnol; 2022 Aug; 40(8):1190-1199. PubMed ID: 35314812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.