These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35048700)

  • 1. Hydroxylation of Platinum Surface Oxides Induced by Water Vapor.
    Mom RV; Knop-Gericke A
    J Phys Chem Lett; 2022 Jan; 13(3):879-883. PubMed ID: 35048700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO oxidation on Pt(111) at near ambient pressures.
    Krick Calderón S; Grabau M; Óvári L; Kress B; Steinrück HP; Papp C
    J Chem Phys; 2016 Jan; 144(4):044706. PubMed ID: 26827227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Oxidation of Platinum under Wet Conditions Observed by Electrochemical X-ray Photoelectron Spectroscopy.
    Mom R; Frevel L; Velasco-Vélez JJ; Plodinec M; Knop-Gericke A; Schlögl R
    J Am Chem Soc; 2019 Apr; 141(16):6537-6544. PubMed ID: 30929429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Functional Material Systems as Fuel Cells under Working Conditions.
    Takagi Y; Uruga T; Tada M; Iwasawa Y; Yokoyama T
    Acc Chem Res; 2018 Mar; 51(3):719-727. PubMed ID: 29509021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of Stable Surface Oxides on Pt(111) at Near-Ambient Pressures.
    Fantauzzi D; Krick Calderón S; Mueller JE; Grabau M; Papp C; Steinrück HP; Senftle TP; van Duin AC; Jacob T
    Angew Chem Int Ed Engl; 2017 Mar; 56(10):2594-2598. PubMed ID: 28120368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Study of the Oxidation of NiAl(100) by Molecular Oxygen and Water Vapor Using Ambient-Pressure X-ray Photoelectron Spectroscopy.
    Liu Q; Qin H; Boscoboinik JA; Zhou G
    Langmuir; 2016 Nov; 32(44):11414-11421. PubMed ID: 27728766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of a thick BaO film supported on Pt(111): adsorption and reaction of NO2, H2O, and CO2.
    Mudiyanselage K; Yi CW; Szanyi J
    Langmuir; 2009 Sep; 25(18):10820-8. PubMed ID: 19588918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media.
    Imai H; Izumi K; Matsumoto M; Kubo Y; Kato K; Imai Y
    J Am Chem Soc; 2009 May; 131(17):6293-300. PubMed ID: 19358577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the Fuel Equivalence Ratio on the Mechanisms of Thiophene Oxidation in Water Vapor at Increased Density of the Reagents.
    Fedyaeva ON; Shishkin AV; Vostrikov AA
    ACS Omega; 2021 May; 6(20):13134-13143. PubMed ID: 34056463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct and dramatic water dissociation on GaP(111) tracked by near-ambient pressure X-ray photoelectron spectroscopy.
    Zhang X; Ptasinska S
    Phys Chem Chem Phys; 2015 Feb; 17(5):3909-18. PubMed ID: 25559043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts.
    van Spronsen MA; Frenken JWM; Groot IMN
    Chem Soc Rev; 2017 Jul; 46(14):4347-4374. PubMed ID: 28589194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Electrocatalytic Oxidation of Small Organic Molecules on Platinum-Gold Nanowires: Influence of the Surface Structure and Pt-Pt/Pt-Au Pair Site Density.
    Smina N; Rosen A; Sztaberek L; Beatrez W; Kingsbury K; Troia R; Wang Y; Zhao J; Schrier J; Koenigsmann C
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59892-59903. PubMed ID: 34890203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation and reduction processes of platinum nanoparticles observed at the atomic scale by environmental transmission electron microscopy.
    Yoshida H; Omote H; Takeda S
    Nanoscale; 2014 Nov; 6(21):13113-8. PubMed ID: 25248870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZnO(101̅0) Surface Hydroxylation under Ambient Water Vapor.
    Newberg JT; Goodwin C; Arble C; Khalifa Y; Boscoboinik JA; Rani S
    J Phys Chem B; 2018 Jan; 122(2):472-478. PubMed ID: 28800394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure XPS study.
    Zhu Z; Tao FF; Zheng F; Chang R; Li Y; Heinke L; Liu Z; Salmeron M; Somorjai GA
    Nano Lett; 2012 Mar; 12(3):1491-7. PubMed ID: 22300373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a ReaxFF Reactive Force Field for the Pt-Ni Alloy Catalyst.
    Shin YK; Gai L; Raman S; van Duin ACT
    J Phys Chem A; 2016 Oct; 120(41):8044-8055. PubMed ID: 27670674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ study of oxidation states of platinum nanoparticles on a polymer electrolyte fuel cell electrode by near ambient pressure hard X-ray photoelectron spectroscopy.
    Takagi Y; Wang H; Uemura Y; Nakamura T; Yu L; Sekizawa O; Uruga T; Tada M; Samjeské G; Iwasawa Y; Yokoyama T
    Phys Chem Chem Phys; 2017 Feb; 19(8):6013-6021. PubMed ID: 28184398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beam-Induced Effects on Platinum Oxidation during Ambient-Pressure X-ray Photoelectron Spectroscopy.
    Li X; Zhang H; Ran Y; Ye M; Yang F; Han Y; Liu Z
    J Phys Chem Lett; 2022 Jun; 13(24):5677-5682. PubMed ID: 35709366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy.
    Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ
    Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying the catalyst chemical state and adsorbed species during methanol conversion on copper using ambient pressure X-ray spectroscopies.
    Eren B; Sole CG; Lacasa JS; Grinter D; Venturini F; Held G; Esconjauregui CS; Weatherup RS
    Phys Chem Chem Phys; 2020 Sep; 22(34):18806-18814. PubMed ID: 32242587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.