These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35048916)

  • 1. Multiphysics microfluidics for cell manipulation and separation: a review.
    Cha H; Fallahi H; Dai Y; Yuan D; An H; Nguyen NT; Zhang J
    Lab Chip; 2022 Feb; 22(3):423-444. PubMed ID: 35048916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles.
    Al-Ali A; Waheed W; Abu-Nada E; Alazzam A
    J Chromatogr A; 2022 Aug; 1676():463268. PubMed ID: 35779391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces.
    Wu Y; Chattaraj R; Ren Y; Jiang H; Lee D
    Anal Chem; 2021 Jun; 93(21):7635-7646. PubMed ID: 34014074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation.
    Farasat M; Aalaei E; Kheirati Ronizi S; Bakhshi A; Mirhosseini S; Zhang J; Nguyen NT; Kashaninejad N
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial microfluidics.
    Di Carlo D
    Lab Chip; 2009 Nov; 9(21):3038-46. PubMed ID: 19823716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic integrated acoustic waving for manipulation of cells and molecules.
    Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A
    Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry-Dependent Efficiency of Dean-Flow Affected Lateral Particle Focusing and Separation in Periodically Inhomogeneous Microfluidic Channels.
    Bányai A; Tóth EL; Varga M; Fürjes P
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of Acoustofluidics in Bioanalytical Chemistry.
    Li P; Huang TJ
    Anal Chem; 2019 Jan; 91(1):757-767. PubMed ID: 30561981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamentals and applications of inertial microfluidics: a review.
    Zhang J; Yan S; Yuan D; Alici G; Nguyen NT; Ebrahimi Warkiani M; Li W
    Lab Chip; 2016 Jan; 16(1):10-34. PubMed ID: 26584257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial focusing in microfluidics.
    Martel JM; Toner M
    Annu Rev Biomed Eng; 2014 Jul; 16():371-96. PubMed ID: 24905880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel electrophoretic assisted hydrophobic microdevice for enhancing blood cell sorting: design and numerical simulation.
    Chen X; Chen X
    Anal Methods; 2024 Apr; 16(15):2368-2377. PubMed ID: 38572530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoretic platforms for bio-microfluidic systems.
    Khoshmanesh K; Nahavandi S; Baratchi S; Mitchell A; Kalantar-zadeh K
    Biosens Bioelectron; 2011 Jan; 26(5):1800-14. PubMed ID: 20933384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic chips for cell sorting.
    Chen P; Feng X; Du W; Liu BF
    Front Biosci; 2008 Jan; 13():2464-83. PubMed ID: 17981727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid microfluidics combined with active and passive approaches for continuous cell separation.
    Yan S; Zhang J; Yuan D; Li W
    Electrophoresis; 2017 Jan; 38(2):238-249. PubMed ID: 27718260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet based microfluidics.
    Seemann R; Brinkmann M; Pfohl T; Herminghaus S
    Rep Prog Phys; 2012 Jan; 75(1):016601. PubMed ID: 22790308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rare cell isolation and analysis in microfluidics.
    Chen Y; Li P; Huang PH; Xie Y; Mai JD; Wang L; Nguyen NT; Huang TJ
    Lab Chip; 2014 Feb; 14(4):626-45. PubMed ID: 24406985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular microfluidics for life sciences.
    Wu J; Fang H; Zhang J; Yan S
    J Nanobiotechnology; 2023 Mar; 21(1):85. PubMed ID: 36906553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.