BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35048948)

  • 1. The sympathetic nervous system exacerbates carotid body sensitivity in hypertension.
    Felippe ISA; Zera T; da Silva MP; Moraes DJA; McBryde F; Paton JFR
    Cardiovasc Res; 2023 Mar; 119(1):316-331. PubMed ID: 35048948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heightened respiratory-parasympathetic coupling to airways in the spontaneously hypertensive rat.
    Moraes DJA; da Silva MP; de Souza DP; Felintro V; Paton JFR
    J Physiol; 2021 Jun; 599(12):3237-3252. PubMed ID: 33873234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition.
    Pauza AG; Thakkar P; Tasic T; Felippe I; Bishop P; Greenwood MP; Rysevaite-Kyguoliene K; Ast J; Broichhagen J; Hodson DJ; Salgado HC; Pauza DH; Japundzic-Zigon N; Paton JFR; Murphy D
    Circ Res; 2022 Mar; 130(5):694-707. PubMed ID: 35100822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in autonomic innervation to the vertebrobasilar arteries in spontaneously hypertensive and Wistar rats.
    Roloff EVL; Walas D; Moraes DJA; Kasparov S; Paton JFR
    J Physiol; 2018 Aug; 596(16):3505-3529. PubMed ID: 29797726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nociceptive pulmonary-cardiac reflexes are altered in the spontaneously hypertensive rat.
    Hooper JS; Stanford KR; Alencar PA; Alves NG; Breslin JW; Dean JB; Morris KF; Taylor-Clark TE
    J Physiol; 2019 Jul; 597(13):3255-3279. PubMed ID: 31077371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent α1-adrenergic receptor function in the nucleus locus coeruleus causes hyperexcitability in AD/HD model rats.
    Igata S; Hayashi T; Itoh M; Akasu T; Takano M; Ishimatsu M
    J Neurophysiol; 2014 Feb; 111(4):777-86. PubMed ID: 24285867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term effect of prazosin administration on blood pressure, heart and structure of coronary artery of young spontaneously hypertensive rats.
    Kristek F; Koprdova R
    J Physiol Pharmacol; 2011 Jun; 62(3):295-301. PubMed ID: 21893689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histochemical and immunohistochemical localization of nitrergic structures in the carotid body of spontaneously hypertensive rats.
    Atanasova DY; Dandov AD; Dimitrov ND; Lazarov NE
    Acta Histochem; 2020 Feb; 122(2):151500. PubMed ID: 31918956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressor mechanisms linked obligatorily to spontaneous hypertension in the rat.
    Mills E; Bruckert JW
    Hypertension; 1988 May; 11(5):427-32. PubMed ID: 3366476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The superior cervical ganglion is involved in chronic chemoreflex sensitization during recovery from acute lung injury.
    Kamra K; Karpuk N; Zucker IH; Schultz HD; Wang HJ
    Front Physiol; 2023; 14():1101408. PubMed ID: 36846321
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanism of antihypertensive activity of orally administered prazosin in spontaneously hypertensive rats.
    Lefèvre-Borg F; Roach AG; Gomeni R; Cavero I
    J Cardiovasc Pharmacol; 1979; 1(1):31-42. PubMed ID: 94380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable role of carotid bodies in cardiovascular responses to exercise, hypoxia and hypercapnia in spontaneously hypertensive rats.
    Pijacka W; Katayama PL; Salgado HC; Lincevicius GS; Campos RR; McBryde FD; Paton JFR
    J Physiol; 2018 Aug; 596(15):3201-3216. PubMed ID: 29313987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Search for an endogenous cannabinoid-mediated effect in the sympathetic nervous system.
    Pfitzer T; Niederhoffer N; Szabo B
    Naunyn Schmiedebergs Arch Pharmacol; 2005 Jan; 371(1):9-17. PubMed ID: 15660243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic diabetes and hypertension impair the in vivo functional response to phenylephrine independent of α
    Rodríguez JE; Ruiz-Hernández A; Hernández-DíazCouder A; Huang F; Hong E; Villafaña S
    Eur J Pharmacol; 2020 Sep; 883():173283. PubMed ID: 32619676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beat-to-beat fluctuations in the BP related signals in rats: can it contribute to the understanding of the development of hypertension?
    Almog Y; Eldor S; Oz O; Akselrod S
    J Auton Nerv Syst; 1998 Mar; 69(1):39-48. PubMed ID: 9672122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the sympathetic nervous system in blood pressure maintenance and in the antihypertensive effects of calcium antagonists in spontaneously hypertensive rats.
    Lefèvre-Borg F; Mathias O; Cavero I
    Hypertension; 1988 Apr; 11(4):360-70. PubMed ID: 2451639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ultrastructural study of the sympathetic preganglionic neurons that innervate the superior cervical ganglion in spontaneously hypertensive rats and Wistar-Kyoto rats.
    Tang FR; Tan CK; Ling EA
    J Hirnforsch; 1995; 36(3):411-20. PubMed ID: 7560913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurohumoral mechanisms involved in the hypertensive response elicited by bilateral carotid occlusion in conscious intact or chronically sympathectomized rats.
    Oliveira RP; Joaquim LF; Fazan R; Salgado MC; Salgado HC
    Clin Exp Hypertens; 2004 Aug; 26(6):537-45. PubMed ID: 15554456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between decreased heart rate and central inhibition of sympathetic discharge after prazosin administration in the spontaneously hypertensive rat.
    Persson B; Yao T; Thorén P
    Clin Exp Hypertens (1978); 1981; 3(2):245-55. PubMed ID: 7215068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha1- and alpha2-adrenoceptor control of sodium transport reverses in developing hypertension.
    Gesek FA
    Hypertension; 1999 Jan; 33(1 Pt 2):524-9. PubMed ID: 9931159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.