These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35048967)

  • 1. Differential effect of canagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on slow and fast skeletal muscles from nondiabetic mice.
    Otsuka H; Yokomizo H; Nakamura S; Izumi Y; Takahashi M; Obara S; Nakao M; Ikeda Y; Sato N; Sakamoto R; Miyachi Y; Miyazawa T; Bamba T; Ogawa Y
    Biochem J; 2022 Feb; 479(3):425-444. PubMed ID: 35048967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved endurance capacity of diabetic mice during SGLT2 inhibition: Role of AICARP, an AMPK activator in the soleus.
    Nakamura S; Miyachi Y; Shinjo A; Yokomizo H; Takahashi M; Nakatani K; Izumi Y; Otsuka H; Sato N; Sakamoto R; Miyazawa T; Bamba T; Ogawa Y
    J Cachexia Sarcopenia Muscle; 2023 Dec; 14(6):2866-2881. PubMed ID: 37941098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice.
    Naznin F; Sakoda H; Okada T; Tsubouchi H; Waise TM; Arakawa K; Nakazato M
    Eur J Pharmacol; 2017 Jan; 794():37-44. PubMed ID: 27876617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms for increased insulin-stimulated Akt phosphorylation and glucose uptake in fast- and slow-twitch skeletal muscles of calorie-restricted rats.
    Sharma N; Arias EB; Bhat AD; Sequea DA; Ho S; Croff KK; Sajan MP; Farese RV; Cartee GD
    Am J Physiol Endocrinol Metab; 2011 Jun; 300(6):E966-78. PubMed ID: 21386065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canagliflozin regulates metabolic reprogramming in diabetic kidney disease by inducing fasting-like and aestivation-like metabolic patterns.
    Shao M; Chen D; Wang Q; Guo F; Wei F; Zhang W; Gan T; Luo Y; Fan X; Du P; Liu Y; Ma X; Ren G; Song Y; Zhao Y; Qin G
    Diabetologia; 2024 Apr; 67(4):738-754. PubMed ID: 38236410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The antidiabetic SGLT2 inhibitor canagliflozin reduces mitochondrial metabolism in a model of skeletal muscle insulin resistance.
    VanDerStad LR; Wyatt EC; Vaughan RA
    Diabet Med; 2024 May; 41(5):e15271. PubMed ID: 38140911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway.
    Yang X; Liu Q; Li Y; Tang Q; Wu T; Chen L; Pu S; Zhao Y; Zhang G; Huang C; Zhang J; Zhang Z; Huang Y; Zou M; Shi X; Jiang W; Wang R; He J
    Adipocyte; 2020 Dec; 9(1):484-494. PubMed ID: 32835596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of sodium-glucose cotransporter 2 suppresses high glucose-induced angiotensinogen augmentation in renal proximal tubular cells.
    Satou R; Cypress MW; Woods TC; Katsurada A; Dugas CM; Fonseca VA; Navar LG
    Am J Physiol Renal Physiol; 2020 Jan; 318(1):F67-F75. PubMed ID: 31682172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resveratrol exhibits differential protective effects on fast- and slow-twitch muscles in streptozotocin-induced diabetic rats.
    Chang CC; Yang MH; Tung HC; Chang CY; Tsai YL; Huang JP; Yen TH; Hung LM
    J Diabetes; 2014 Jan; 6(1):60-7. PubMed ID: 23786522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effect of canagliflozin and exercise training on high-fat diet-fed mice.
    Tanaka K; Takahashi H; Katagiri S; Sasaki K; Ohsugi Y; Watanabe K; Rasadul IMD; Mine K; Nagafuchi S; Iwata T; Eguchi Y; Anzai K
    Am J Physiol Endocrinol Metab; 2020 Apr; 318(4):E492-E503. PubMed ID: 32017594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT).
    Nakano D; Kawaguchi T; Iwamoto H; Hayakawa M; Koga H; Torimura T
    PLoS One; 2020; 15(4):e0232283. PubMed ID: 32343721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms.
    Osataphan S; Macchi C; Singhal G; Chimene-Weiss J; Sales V; Kozuka C; Dreyfuss JM; Pan H; Tangcharoenpaisan Y; Morningstar J; Gerszten R; Patti ME
    JCI Insight; 2019 Mar; 4(5):. PubMed ID: 30843877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake.
    Kaji K; Nishimura N; Seki K; Sato S; Saikawa S; Nakanishi K; Furukawa M; Kawaratani H; Kitade M; Moriya K; Namisaki T; Yoshiji H
    Int J Cancer; 2018 Apr; 142(8):1712-1722. PubMed ID: 29205334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1.
    Novikov A; Fu Y; Huang W; Freeman B; Patel R; van Ginkel C; Koepsell H; Busslinger M; Onishi A; Nespoux J; Vallon V
    Am J Physiol Renal Physiol; 2019 Jan; 316(1):F173-F185. PubMed ID: 30427222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter‑1 and lactate dehydrogenase A.
    Xu D; Zhou Y; Xie X; He L; Ding J; Pang S; Shen B; Zhou C
    Int J Oncol; 2020 Nov; 57(5):1223-1233. PubMed ID: 32901837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential In Vitro Effects of SGLT2 Inhibitors on Mitochondrial Oxidative Phosphorylation, Glucose Uptake and Cell Metabolism.
    Zügner E; Yang HC; Kotzbeck P; Boulgaropoulos B; Sourij H; Hagvall S; Elmore CS; Esterline R; Moosmang S; Oscarsson J; Pieber TR; Peng XR; Magnes C
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro.
    Wei D; Liao L; Wang H; Zhang W; Wang T; Xu Z
    Life Sci; 2020 Apr; 247():117414. PubMed ID: 32035928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection.
    Umino H; Hasegawa K; Minakuchi H; Muraoka H; Kawaguchi T; Kanda T; Tokuyama H; Wakino S; Itoh H
    Sci Rep; 2018 May; 8(1):6791. PubMed ID: 29717156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the sodium-glucose co-transporter SGLT2 by canagliflozin ameliorates diet-induced obesity by increasing intra-adipose sympathetic innervation.
    Yang X; Liu Q; Li Y; Ding Y; Zhao Y; Tang Q; Wu T; Chen L; Pu S; Cheng S; Zhang J; Zhang Z; Huang Y; Li R; Zhao Y; Zou M; Shi X; Jiang W; Wang R; He J
    Br J Pharmacol; 2021 Apr; 178(8):1756-1771. PubMed ID: 33480065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolytic fast-twitch muscle fiber restoration counters adverse age-related changes in body composition and metabolism.
    Akasaki Y; Ouchi N; Izumiya Y; Bernardo BL; Lebrasseur NK; Walsh K
    Aging Cell; 2014 Feb; 13(1):80-91. PubMed ID: 24033924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.