BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35049657)

  • 1. Hyaluronic Acid Allows Enzyme Immobilization for Applications in Biomedicine.
    Arnold J; Chapman J; Arnold M; Dinu CZ
    Biosensors (Basel); 2022 Jan; 12(1):. PubMed ID: 35049657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronic Acid: A Powerful Biomolecule with Wide-Ranging Applications-A Comprehensive Review.
    Iaconisi GN; Lunetti P; Gallo N; Cappello AR; Fiermonte G; Dolce V; Capobianco L
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme Immobilization on Nanomaterials for Biosensor and Biocatalyst in Food and Biomedical Industry.
    Bhavaniramya S; Vanajothi R; Vishnupriya S; Premkumar K; Al-Aboody MS; Vijayakumar R; Baskaran D
    Curr Pharm Des; 2019; 25(24):2661-2676. PubMed ID: 31309885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonic Anhydrase Carrying Electrospun Nanofibers for Biocatalysis Applications.
    Ünlüer ÖB; Ecevit K; Diltemiz SE
    Protein Pept Lett; 2021; 28(5):520-532. PubMed ID: 33143606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilized lipases-based nano-biocatalytic systems - A versatile platform with incredible biotechnological potential.
    Bilal M; Fernandes CD; Mehmood T; Nadeem F; Tabassam Q; Ferreira LFR
    Int J Biol Macromol; 2021 Apr; 175():108-122. PubMed ID: 33548312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Cascade Reactions Mediated by Highly Efficient Biomimetic Quasi Metal-Organic Frameworks.
    Xia H; Li N; Huang W; Song Y; Jiang Y
    ACS Appl Mater Interfaces; 2021 May; 13(19):22240-22253. PubMed ID: 33966390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Immobilization of Enzymes in Biomimetic Silica.
    Jackson E; Correa S; Betancor L
    Methods Mol Biol; 2020; 2100():259-270. PubMed ID: 31939129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials-based strategies for multi-enzyme immobilization and co-localization: A review.
    Jia F; Narasimhan B; Mallapragada S
    Biotechnol Bioeng; 2014 Feb; 111(2):209-22. PubMed ID: 24142707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.
    Sirisha VL; Jain A; Jain A
    Adv Food Nutr Res; 2016; 79():179-211. PubMed ID: 27770861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies.
    Aggarwal S; Chakravarty A; Ikram S
    Int J Biol Macromol; 2021 Jan; 167():962-986. PubMed ID: 33186644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes.
    Wicklein B; Darder M; Aranda P; Ruiz-Hitzky E
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4339-48. PubMed ID: 21970377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naturally-derived biopolymers: Potential platforms for enzyme immobilization.
    Bilal M; Iqbal HMN
    Int J Biol Macromol; 2019 Jun; 130():462-482. PubMed ID: 30825566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview on biocatalysts immobilization on textiles: Preparation, progress and application in wastewater treatment.
    Morshed MN; Behary N; Bouazizi N; Guan J; Nierstrasz VA
    Chemosphere; 2021 Sep; 279():130481. PubMed ID: 33894516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytically active nanomaterials: a promising candidate for artificial enzymes.
    Lin Y; Ren J; Qu X
    Acc Chem Res; 2014 Apr; 47(4):1097-105. PubMed ID: 24437921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential applications of enzymes immobilized on/in nano materials: A review.
    Ansari SA; Husain Q
    Biotechnol Adv; 2012; 30(3):512-23. PubMed ID: 21963605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Three Commercial Graphene Derivatives on the Catalytic Properties of a Lactobacillus plantarum α-l-Rhamnosidase When Used as Immobilization Matrices.
    Antón-Millán N; García-Tojal J; Marty-Roda M; Garroni S; Cuesta-López S; Tamayo-Ramos JA
    ACS Appl Mater Interfaces; 2018 May; 10(21):18170-18182. PubMed ID: 29732878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme Immobilization Technologies and Industrial Applications.
    Maghraby YR; El-Shabasy RM; Ibrahim AH; Azzazy HME
    ACS Omega; 2023 Feb; 8(6):5184-5196. PubMed ID: 36816672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured materials for harnessing the power of horseradish peroxidase for tailored environmental applications.
    Bilal M; Barceló D; Iqbal HMN
    Sci Total Environ; 2020 Dec; 749():142360. PubMed ID: 33370916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laccase immobilization onto natural polysaccharides for biosensing and biodegradation.
    Shokri Z; Seidi F; Karami S; Li C; Saeb MR; Xiao H
    Carbohydr Polym; 2021 Jun; 262():117963. PubMed ID: 33838831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.